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Abstract

Over the past few years, there has been a significant increase in interest in renewable energy, which is
essential for reducing greenhouse gas emissions. Hydroelectric power production is directly related to the
regional hydrological conditions of a watershed and is sensitive to variations in water availability
throughout the year. The impacts of climate change on the hydrologic cycle have received much attention
in studies that consider complex, interactive issues. This paper focuses on water resources for power
production, which can be estimated based on river basin discharge. There is uncertainty about how climate
change will affect hydropower development on various scales, including the global, national, and regional
levels. Despite being a global phenomenon, climate change has different effects on hydropower generation
at various spatial scales. The different degrees of uncertainty are based on regional geography and local
hydrological conditions. This explains the requirement for thoroughly examining how climate change will
impact hydropower generation locally or globally. Additionally, it aims to offer a range of strategies for
reducing the effects of climate change on hydropower production and guaranteeing the sustainability of the

global energy system under climate change to assist decision-makers.

Keywords : Climate Change, Hydropower generation, Uncertainty, Arid and Semi-Arid regions,

Modelling.
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1. Introduction

Hydropower, an environmentally friendly and sustainable energy source, utilizes the force of
water from higher reservoirs to create electricity. It serves a crucial role in fulfilling current and
future energy needs. As of 2019, hydropower accounted for 16% of worldwide electricity
production (Killingtveit., 2019), dominating renewable energy sources by 78% (Sun, 2020).
Additionally, it significantly aids in reducing greenhouse gas emissions and addressing the issue
of global warming. Conversely, hydropower generation faces significant vulnerability to climate
change, especially in arid and semi-arid regions. It heavily depends on water resources, making it
susceptible to fluctuations in precipitation patterns, snowmelt, streamflow, and the timing of water
flow. As per the Intergovernmental Panel on Climate Change (IPCC, 2021), these factors can
exhibit substantial year-to-year variability, indicating potentially severe impacts of climate change
on hydropower generation. The report projects adverse effects on hydropower generation
potential, suggesting a potential decrease of up to 6% due to climate change. This decline in
hydropower capacity is linked to shifts in hydrological patterns and water availability resulting
from temperature and precipitation changes. Climate change is anticipated to alter the patterns and
spatial distribution of water resources, influenced by shifts in precipitation and temperature. These
changes could lead to varying flow patterns, affecting consistency and seasonal variations. Despite
advancements in climate research, a comprehensive understanding of specific regions within the
Euphrates basin, notably the Haditha Watershed, still needs to be completed. The existing climate
scenarios for these areas often need more precision, potentially failing to capture crucial nuances
in the basin's climate, thereby contributing to climate-related uncertainties. Lately, arid regions
have undergone discernible climate fluctuations, leaning towards hotter and drier conditions over
the past few decades (Huang et al., 2016; Corwin., 2021). The uncertainties and shifts in climate
can substantially modify the hydrological dynamics of the Euphrates River basin, impacting both
regional and local scales can influence variables such as discharge volumes and the timing of
surface flow (Sharafati ,et, al., 2020; Muratoglu ,et ,al., 2022). Projections on a global scale suggest
that low- and mid-latitude areas might encounter water scarcity problems because of reduced water
availability. Conversely, higher-latitude regions could experience increased surface flow volumes
(Mankin, et, al., 2019). There are crucial gaps in research that demand more specific insights into
the effects, vulnerabilities, and resilience of hydropower reservoir basins concerning climate
change and its variability. Utilizing ensemble scenarios and the outcomes from (GCMs) becomes

essential to bridging these gaps. The primary challenge to hydropower generation from reservoirs
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hinges on the volume and timing of streamflow, both of which are intricately linked to precipitation
patterns. This interdependence makes hydropower reservoir generation exceptionally susceptible
to fluctuations brought about by changing climate conditions.

2. Effect of Climate Change

2.1. Effect of Climate Change in Arid Regions

Arid and semi-arid regions globally require increased water resources, particularly for irrigation,
to support food production (Golla., 2021; Mirdashtvan et .al., 2021). The strain on the water
supply in these areas is intensified by population pressure, compounded by the effects of climate
change, such as rising temperatures and an abundance of high solar radiation (Lange., 2019; Ismail
& Go., 2021). Considering greenhouse gas (GHG) emissions presents a challenge that the physical
environment may struggle to address. This issue is spurred by three distinct geographical factors
and the atmospheric layer responsible for regulating spatial and temporal variations in climate and
weather patterns (Wang & Gu., 2021, Zittis ,.et, al., 2022). Arid and semi-arid regions confront
water scarcity challenges exacerbated by the effects of climate change. The sparse vegetation,
particularly under prolonged exposure to intense solar radiation, rising temperatures, and
heightened evaporation rates, further contributes to the strain on water resources in these areas
(Nikolaou .et, al., 2020; Morante-Carballo ,et, al., 2022). Reports from the Intergovernmental
Panel on Climate Change (IPCC) in 2021, addressing the adaptation and mitigation strategies for
arid and semi-arid regions concerning water resources, emphasize the importance of considering
temperature and precipitation variations over a minimum of 30 to 50 years (Singh., & Chudasama.,
2021, ElI-Rawy et ,al., 2023). This extended timeframe is crucial for assessing hydrological effects
through Global Climate Models (GCMs) (Hargrove et ,al., 2023; Dias, et ,al., 2023). The basin
within arid regions is projected to undergo a reduction in annual runoff and a decrease in the
volume of water stored in reservoirs due to the impacts of climate change. These changes
significantly affect regional hydrological processes and the development of local ecosystems
(Sen., 2021; Raulino ,et ,al., 2021). Consequently, there will likely be an increase in
evapotranspiration (ET) and a decrease in soil moisture (SM) and streamflow (SF). These effects
will manifest under different scenarios of global climate change and alterations in land use or cover
(Huang et al., 2022; Verma et al., 2023).
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2.2. Emission Scenarios: Shared Socioeconomic Pathways

Indeed, the IPCC introduced a new set of climate scenarios known as Shared Socioeconomic
Pathways (SSPs) in their ARe report (Meinshausen ,et ,al., 2020, Siabi ,et ,al., 2023). The IPCC
and other researchers have developed past scenarios such as SA90, 1S92, SRES, and RCPs to
explore different climate futures. However, none of these previous scenarios comprehensively
cover the entire range of potential climate futures (Stammer et al., 2021). The Shared
Socioeconomic Pathways (SSPs) build upon the Representative Concentration Pathways (RCPSs)
introduced in the IPCC's ARs. The RCPs (Gutschow ,et ,al., 2021(categorized four potential
pathways based solely on their radiative forcing in the year 2100, ranging from RCP 2.6 to RCP
8.5, indicating a projected radiative forcing of 2.6 to 8.5 W/m?, respectively, without considering
socioeconomic factors. In contrast, the SSPs, classified according to the ARG report by IPCC in
2021, encompass five scenarios (SSP 1.9, SSP 1-2.6, SSP 2-4.5, SSP 3-7.0, and SSP5-8.5) which
integrate various socioeconomic factors such as population trends, economic growth, education,
and other societal aspects into their projections (Siabi ,et, al., 2023). Figure(1) illustrates the
trajectories of SSPs and the broader patterns of change in weather trends. The solid lines denote
the CMIP6 ensemble mean, while the shaded areas encompass the range of CMIP6 results
projected for 2100. Conversely, RCP scenarios are represented by dashed lines, indicating the
CMIP5 ensemble mean. This depiction is derived from the research conducted by Tebaldi et al. in
2020.
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Figure (1): Present the climate projections derived from the Model Intercomparison Project
(MIP) scenario within the framework of CMIPG6. (Tebaldi, et ,al., 2020).
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2.3. Modelling of Hydrological Systems under Climate Change

Employing diverse empirical models and specialized techniques within hydrological programs
is vital for simulating watersheds, explicitly focusing on managing water quality. This approach
aims to address the challenges posed by both the quantity and quality of water management within
the complexities of the water cycle (Pandi et al., 2021). Water resource and watershed analyses
have emerged as critical components of hydrological modelling sciences in the 21st century (Sun
et al., 2023). They play a pivotal role in contemporary research objectives, particularly in directly
studying the effects of climate change on global resources. This involves analyzing reduced
rainfall patterns and the repercussions of natural floods and erosion on water resources.
Hydrological modelling is increasingly pivotal for risk analysis and assessment (Li et al., 2019,
Swain et al., 2020, Tayyeh & Mohammed., 2023). It has become a strategic tool benefiting the
scientific community and decision-makers, aiding in informed decision-making processes.
Cutting-edge technologies such as Geographic Information Systems (GIS), Remote Sensing (RS),
and other advanced tools are integral to hydrological modelling. Their integration enhances these
models' precision, scope, and efficacy, allowing for a more comprehensive understanding of water-
related dynamics and their implications. Digital spatial data of a hydrological system is employed
to extract topographic, topological, and hydrological information for delineating purposes in
hydrologic modelling (Wu et ,al., 2019, Castro ,et ,al., 2020). Spatial datasets and hydrologic
models, often derived from digital elevation models, facilitate topological analysis (Ibrahim ,et
,al., 2020, Liu, et ,al., 2021). This process aids in determining crucial hydrological parameters
related to streams, rivers, and watersheds. These parameters include curve number, area, lag-time
for watersheds, and the routing model and duration for specific stream segments (Cotugno ,et ,al.,
2021, Bhusal ,et ,al., 2022). The Assessment of Science Integrating Point and Nonpoint Sources
(BASINS) system, created by the US Environmental Protection Agency, was designed to
amalgamate Geographic Information Systems (GIS), watershed tools, and various models like
SWAT, MIKE SHE, and HMS. These models were utilized to quantify and assess the impacts of
land-use alterations on a catchment's peak flow patterns (Yuan et al., 2020, Srinivas, et ,al., 2020,
Liu ,.et al., 2021). Stream runoff and hydropower generation characteristics in arid regions vary
across different climate types, from hot and dry to moderate or humid to warm conditions (Yang
et ,al., 2020, Annys ,et ,al., 2020). River discharge capacities play a significant role in influencing
the output of hydropower, particularly under the impact of climate change (Maran ,et ,al., 2014,
Qin ,et ,al., 2020).
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2.4. Uncertainty from Global Climate Models with Emission Scenario

The uncertainties within (GCMs) primarily stem from inaccuracies in depicting climate
processes (model physics) and flawed model structures. These issues hinder the models' ability to
accurately capture short-term (interannual) and longer-term (decadal) variability in climate
patterns (Alizadeh., 2022, Omid., 2022). Another significant source of uncertainty in all climate
models arises from the challenge of accurately representing the complex interactions among
different subsystems, including the atmosphere, hydrosphere, and lithosphere. These
interconnections add layers of complexity and uncertainty to climate modelling efforts (Slingo &
Palmer., 2011, Srikrishnan ,et, al., 2022). In several recent studies, there has been a notable
emphasis on the differences in predicted climate changes among different Global Climate Models
(GCMs). These variations are apparent in the expected alterations' scale and frequency, as
delineated in the IPCC's 2021 report. Multiple studies have compared earlier iterations
(CMIP3/CM1P2) of climate projections and more recent versions (CMIP4/CMIP5). These
analyses have unveiled noteworthy discrepancies between the two sets of projections (Lutz ,et ,al.,
2013, Alves et al., 2016, Carvalho ,et ,al., 2022). Even with advancements in enhancing model
construction, the extent of uncertainties has shown minimal change, as noted in reports from the
IPCC in 2014 and 2021. Although Global Climate Models inherently contain uncertainties,
numerous techniques have been devised to measure and address them, all to generate reliable
future projections. This principle is highlighted in studies conducted by (McSweeney ,et, al., 2015,
Raju & Kumar., 2020). For instance, recognizing the limitations of individual models in accurately
simulating regional climatic processes, a pragmatic strategy involves combining projections from
multiple (GCMs). This amalgamation produces an ensemble mean representing the most probable
future climate scenario. Figure (2) demonstrates that uncertainty is also associated with the
selection of parameterization used to depict specific processes in model construction, as discussed
by (Tran ,et ,al., 2023).
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Figure(2) : CM1P6 model-based time series of temperature and precipitation (historical and
projections) from 2020 to 2100 relative to the 1980-2000 baseline for the SSPs scenarios. The
shaded area represents the range of changes projected by the 20 models for each year. (Tran et al,

2023).

The second significant source of uncertainty in emission scenario studies and simulations stems

from predicting future environmental policies and the magnitude of greenhouse gas (GHG)
emissions (Maier ,et, al., 2016, Aguiar et ,al., 2016, Ho ,et ,al., 2019).
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2.5. Power Generation under Climate Change

The effects of global warming on water resources entail changes in the hydrological cycle and
variations in water availability, affecting both river flows and the storage capacity of reservoirs
(Chaturvedi et ,al., 2021, Kahaduwa & Rajapakse., 2022). Hydropower plants are susceptible to
these alterations in water availability and the hydrological cycle (Falchetta ,et, al., 2019, Mtilatila
et al., 2020, Almeida ,et ,al., 2021). The efficiency of reservoir operations is a fundamental
requirement for effective hydropower production (Riggins., 2022). Climate change has led to
significant shifts in temperature, precipitation, and streamflow patterns, exerting a considerable
influence on hydropower projects. These alterations affect the design considerations for dams and
reservoirs, as well as impacting their operational lifespans (Lu ,et ,al., 2020, Qin et al., 2020, Tariku
etal., 2021). Reservoirs play a pivotal role in alleviating water scarcity within the system, ensuring
a sustainable supply for hydropower generation (Brunner et al., 2019, Rafique et al., 2020).
Moreover, reservoir operating rules serve as commonly used guidelines for regulating basin
releases, aiming to maximize the advantages a reservoir offers while upholding predetermined
inflow and storage levels (Tegegne & Kim, 2020, Wang et al., 2020, Munir et al., 2022). As per
the Working Group Il Contribution to the IPCC ARG, the findings indicate anticipated risks in the
near-term, mid-term, and long-term across various global warming scenarios. These risks
encompass pathways that surpass a sustained 1.5°C global warming level, posing challenges under
these conditions.

2.6. Performance of Hydropower Generation

Historically, the assessment of reservoir performance amidst climate change and uncertainty has
primarily focused on evaluating the reliability of inflow volume and timing (Chadwick ,et, al.,
2020, Ren et ,al., 2020, Mortezaeipooya ,et ,al., 2022). Apart from the conventional criteria, some
researchers have introduced two additional metrics—resilience and vulnerability—to gauge
diverse aspects and evaluate the performance of reservoirs (Thushara ,et ,al., 2019, Ren ,et .al.,
2020, Nguyen et ,al., 2020). Performance indices are computed using fundamental data tied to
reservoir hydropower generation, encompassing metrics like the volume of water required and
provided across all periods, the frequency of failures, and the magnitude of these failures
concerning their duration and severity. Studies often employ monthly or yearly periods for these
evaluations. Resilience and vulnerability serve as two critical criteria for assessing reservoir
performance. Resilience measures the system's capacity for swift recovery, while vulnerability
evaluates the potential severity of consequences in the event of failure. Indeed, there is a scarcity
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of global studies dedicated to crafting indicators for assessing reservoirs, and those available often
emphasize the monotonic trends related to the reliability and vulnerability linked to reservoir
inflows (Nguyen etal., 2020, Bozorg et al., 2022, Tayyeh & Mohammed., 2024). Statistical indices
have often been limited to a narrow scope, and they have yet to be extensively employed to
investigate the performance behaviour of a hydropower, including aspects like resilience, and
vulnerability, for evaluation and their correlation with the sources of uncertainty. According to an
exhaustive review and the most up-to-date information available from ScienceDirect Figure (3)
highlights a substantial body of research in power generation. However, it is noteworthy that these
studies have yet to delve into modelling hydroelectric energy production from reservoirs within
arid regions. This modelling approach considers all crucial factors, such as storage capacity, water
levels, turbine count, and generation efficiency. It seeks to factor in the potential impacts of climate
change on these reservoirs. Furthermore, this research intends to quantify generation efficiency
using statistical metrics related to vulnerability and resilience while accounting for all sources of
uncertainty from climate and hydrological modelling to provide a comprehensive and detailed
understanding of this intricate phenomenon.
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Figure(3): Previous studies based upon ScienceDirect data.
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3. Conclusions

Global greenhouse gas emissions substantially impact hydroelectric power, both in the short and
long term, regardless of whether it is applied on a large or small scale. Hence, comprehending
strategies to sustain, minimize vulnerability, and optimize hydropower production amid the
adverse impacts of climate change becomes crucial. Despite published successes in enhancing
approaches to mitigate the adverse effects of climate change on water resources and hydropower,
considerable uncertainties persist in hydrological processes due to climate change, subsequently
influencing hydroelectric power generation.

Indeed, enhancing methods for forecasting and predicting alterations in the hydrological regime
resulting from climate-induced extreme events is crucial for better and more precise evaluations
of hydropower development potential in adverse climate conditions. However, none of the large-
scale studies mentioned in this research encompassed the essential hydrographic conditions
necessary for such assessments. Establishing general measures to mitigate the impacts of climate
change proves challenging due to the diversity and distinctiveness of each hydropower station.
Ultimately, it is crucial to intensify and regulate technological initiatives for hydropower
management to safeguard the environment, ecosystems, and socio-economic sectors. This includes
optimizing flood-control operations during high-flow periods and enhancing water usage systems
during droughts. Climate change will impact hydropower development and sustainability,
imposing a more significant strain on the global energy system. Nevertheless, with suitable
mitigation and adaptation strategies, hydropower can serve as a support and catalyst for

environmental and societal development.
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