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Abstract 

    Over the past few years, there has been a significant increase in interest in renewable energy, which is 

essential for reducing greenhouse gas emissions. Hydroelectric power production is directly related to the 

regional hydrological conditions of a watershed and is sensitive to variations in water availability 

throughout the year. The impacts of climate change on the hydrologic cycle have received much attention 

in studies that consider complex, interactive issues. This paper focuses on water resources for power 

production, which can be estimated based on river basin discharge. There is uncertainty about how climate 

change will affect hydropower development on various scales, including the global, national, and regional 

levels. Despite being a global phenomenon, climate change has different effects on hydropower generation 

at various spatial scales. The different degrees of uncertainty are based on regional geography and local 

hydrological conditions. This explains the requirement for thoroughly examining how climate change will 

impact hydropower generation locally or globally. Additionally, it aims to offer a range of strategies for 

reducing the effects of climate change on hydropower production and guaranteeing the sustainability of the 

global energy system under climate change to assist decision-makers.  

Keywords :  Climate Change, Hydropower generation, Uncertainty, Arid and Semi‑Arid regions, 

Modelling. 
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 الخلاصة 

 الغازا   انبعاثا  من للحد  ضننرورية  تعتبر والتي المتجددة   بالطاقة  الاهتمام  في  كبيرة زيادة هناك  كان  الماضننية  القليلة  السنننوا   مدى على   

 وهو  المياه  لمسننتجمعا  الإقليمية  الهيدرولوجية  بالظروف  مباشننر بشننكل الكهرومائية  الطاقة إنتاج يرتبط العالمي  الحراري  للانحباس المسننببة

  الدراسنننا   في  كبير  باهتمام  الهيدرولوجية  الدورة على المناخ تغير  تأثيرا   حظيت لقد. - العام  مدار على-  المياه  توفر في  للاختلافا   حسننناس

  أحواض تصنننريف  أسننناس على  تقديرها  يمكن والتي  الطاقة  لإنتاج  المياه  موارد على  الورقة هذه تركز. وتفاعلية معقدة قضنننايا  في تنظر التي

 العالمية  المسنننتويا  ذلك في بما مختلفة  مسنننتويا  على  الكهرومائية  الطاقة  تطوير على المناخ  تغير تأثير  كيفية  حول  يقين عدم  هناك. الأنهار

 مسننننتوينا    على  الكهرومنائينة الطناقنة  توليند  على مختلفنة  تنأثيرا  لنه  المنناخ  تغير  فننن  عنالمينة  ظناهرة  كوننه  من الرغم  على. والإقليمينة والوطنينة

  دقيق  فحص إلى  الحاجة يفسنر وهذا.  المحلية  الهيدرولوجية  والظروف الإقليمية  الجغرافيا إلى  المختلفة  اليقين عدم  درجا  تسنتند. مختلفة مكانية

 للحد   الاسننتراتيجيا   من  مجموعة  تقديم إلى يهدف ذلك   إلى  بالإضننافة.  عالميا  أو محليا الكهرومائية  الطاقة توليد على المناخ  تغير  تأثير لكيفية

 .القرار صناع لمساعدة المناخ تغير ظل في العالمي الطاقة نظام استدامة وضمان الكهرومائية الطاقة إنتاج على المناخ  تغير آثار من

 .النمذجة القاحلة  وشبه القاحلة المناطق اليقين  عدم الكهرومائية  الطاقة توليد  المناخ  تغير :المفتاحية الكلمات
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1. Introduction 

   Hydropower, an environmentally friendly and sustainable energy source, utilizes the force of 

water from higher reservoirs to create electricity. It serves a crucial role in fulfilling current and 

future energy needs. As of 2019, hydropower accounted for 16% of worldwide electricity 

production (Killingtveit., 2019), dominating renewable energy sources by 78% (Sun, 2020). 

Additionally, it significantly aids in reducing greenhouse gas emissions and addressing the issue 

of global warming. Conversely, hydropower generation faces significant vulnerability to climate 

change, especially in arid and semi-arid regions. It heavily depends on water resources, making it 

susceptible to fluctuations in precipitation patterns, snowmelt, streamflow, and the timing of water 

flow. As per the Intergovernmental Panel on Climate Change (IPCC, 2021), these factors can 

exhibit substantial year-to-year variability, indicating potentially severe impacts of climate change 

on hydropower generation. The report projects adverse effects on hydropower generation 

potential, suggesting a potential decrease of up to 6% due to climate change. This decline in 

hydropower capacity is linked to shifts in hydrological patterns and water availability resulting 

from temperature and precipitation changes. Climate change is anticipated to alter the patterns and 

spatial distribution of water resources, influenced by shifts in precipitation and temperature. These 

changes could lead to varying flow patterns, affecting consistency and seasonal variations. Despite 

advancements in climate research, a comprehensive understanding of specific regions within the 

Euphrates basin, notably the Haditha Watershed, still needs to be completed. The existing climate 

scenarios for these areas often need more precision, potentially failing to capture crucial nuances 

in the basin's climate, thereby contributing to climate-related uncertainties. Lately, arid regions 

have undergone discernible climate fluctuations, leaning towards hotter and drier conditions over 

the past few decades (Huang et al., 2016; Corwin., 2021). The uncertainties and shifts in climate 

can substantially modify the hydrological dynamics of the Euphrates River basin, impacting both 

regional and local scales can influence variables such as discharge volumes and the timing of 

surface flow (Sharafati ,et, al., 2020; Muratoglu ,et  ,al., 2022). Projections on a global scale suggest 

that low- and mid-latitude areas might encounter water scarcity problems because of reduced water 

availability. Conversely, higher-latitude regions could experience increased surface flow volumes 

(Mankin, et, al., 2019). There are crucial gaps in research that demand more specific insights into 

the effects, vulnerabilities, and resilience of hydropower reservoir basins concerning climate 

change and its variability. Utilizing ensemble scenarios and the outcomes from (GCMs) becomes 

essential to bridging these gaps. The primary challenge to hydropower generation from reservoirs 
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hinges on the volume and timing of streamflow, both of which are intricately linked to precipitation 

patterns. This interdependence makes hydropower reservoir generation exceptionally susceptible 

to fluctuations brought about by changing climate conditions. 

2. Effect of Climate Change 

2.1. Effect of Climate Change in Arid Regions 

   Arid and semi-arid regions globally require increased water resources, particularly for irrigation, 

to support food production (Golla., 2021; Mirdashtvan ,et .al., 2021). The strain on the water 

supply in these areas is intensified by population pressure, compounded by the effects of climate 

change, such as rising temperatures and an abundance of high solar radiation (Lange., 2019; Ismail 

& Go., 2021). Considering greenhouse gas (GHG) emissions presents a challenge that the physical 

environment may struggle to address. This issue is spurred by three distinct geographical factors 

and the atmospheric layer responsible for regulating spatial and temporal variations in climate and 

weather patterns (Wang & Gu., 2021, Zittis ,,et, al., 2022). Arid and semi-arid regions confront 

water scarcity challenges exacerbated by the effects of climate change. The sparse vegetation, 

particularly under prolonged exposure to intense solar radiation, rising temperatures, and 

heightened evaporation rates, further contributes to the strain on water resources in these areas 

(Nikolaou ,et, al., 2020; Morante-Carballo ,et, al., 2022). Reports from the Intergovernmental 

Panel on Climate Change (IPCC) in 2021, addressing the adaptation and mitigation strategies for 

arid and semi-arid regions concerning water resources, emphasize the importance of considering 

temperature and precipitation variations over a minimum of 30 to 50 years (Singh., & Chudasama., 

2021, El-Rawy ,et ,al., 2023). This extended timeframe is crucial for assessing hydrological effects 

through Global Climate Models (GCMs) (Hargrove ,et ,al., 2023; Dias   ,  et   ,al., 2023). The basin 

within arid regions is projected to undergo a reduction in annual runoff and a decrease in the 

volume of water stored in reservoirs due to the impacts of climate change. These changes 

significantly affect regional hydrological processes and the development of local ecosystems 

(Şen., 2021; Raulino  ,et ,al., 2021). Consequently, there will likely be an increase in 

evapotranspiration (ET) and a decrease in soil moisture (SM) and streamflow (SF). These effects 

will manifest under different scenarios of global climate change and alterations in land use or cover 

(Huang et al., 2022; Verma et al., 2023). 
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2.2. Emission Scenarios: Shared Socioeconomic Pathways 

   Indeed, the IPCC introduced a new set of climate scenarios known as Shared Socioeconomic 

Pathways (SSPs) in their AR6 report (Meinshausen ,et ,al., 2020, Siabi ,et ,al., 2023). The IPCC 

and other researchers have developed past scenarios such as SA90, IS92, SRES, and RCPs to 

explore different climate futures. However, none of these previous scenarios comprehensively 

cover the entire range of potential climate futures (Stammer et al., 2021). The Shared 

Socioeconomic Pathways (SSPs) build upon the Representative Concentration Pathways (RCPs) 

introduced in the IPCC's AR5. The RCPs (Gütschow ,et ,al., 2021(categorized four potential 

pathways based solely on their radiative forcing in the year 2100, ranging from RCP 2.6 to RCP 

8.5, indicating a projected radiative forcing of 2.6 to 8.5 W/m2, respectively, without considering 

socioeconomic factors . In contrast, the SSPs, classified according to the AR6 report by IPCC in 

2021, encompass five scenarios (SSP 1.9, SSP 1–2.6, SSP 2–4.5, SSP 3–7.0, and SSP5–8.5) which 

integrate various socioeconomic factors such as population trends, economic growth, education, 

and other societal aspects into their projections (Siabi ,et, al., 2023). Figure(1)   illustrates the 

trajectories of SSPs and the broader patterns of change in weather trends. The solid lines denote 

the CMIP6 ensemble mean, while the shaded areas encompass the range of CMIP6 results 

projected for 2100. Conversely, RCP scenarios are represented by dashed lines, indicating the 

CMIP5 ensemble mean. This depiction is derived from the research conducted by Tebaldi et al. in 

2020. 

 

 

 

 

 

 

 

 

Figure (1): Present the climate projections derived from the Model Intercomparison Project 

(MIP) scenario within the framework of CMIP6. (Tebaldi, et ,al., 2020). 
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2.3. Modelling of Hydrological Systems under Climate Change 

   Employing diverse empirical models and specialized techniques within hydrological programs 

is vital for simulating watersheds, explicitly focusing on managing water quality. This approach 

aims to address the challenges posed by both the quantity and quality of water management within 

the complexities of the water cycle (Pandi et al., 2021). Water resource and watershed analyses 

have emerged as critical components of hydrological modelling sciences in the 21st century (Sun 

et al., 2023). They play a pivotal role in contemporary research objectives, particularly in directly 

studying the effects of climate change on global resources. This involves analyzing reduced 

rainfall patterns and the repercussions of natural floods and erosion on water resources . 

Hydrological modelling is increasingly pivotal for risk analysis and assessment (Li et al., 2019, 

Swain et al., 2020, Tayyeh & Mohammed., 2023). It has become a strategic tool benefiting the 

scientific community and decision-makers, aiding in informed decision-making processes . 

Cutting-edge technologies such as Geographic Information Systems (GIS), Remote Sensing (RS), 

and other advanced tools are integral to hydrological modelling. Their integration enhances these 

models' precision, scope, and efficacy, allowing for a more comprehensive understanding of water-

related dynamics and their implications. Digital spatial data of a hydrological system is employed 

to extract topographic, topological, and hydrological information for delineating purposes in 

hydrologic modelling (Wu ,et ,al., 2019, Castro ,et ,al., 2020). Spatial datasets and hydrologic 

models, often derived from digital elevation models, facilitate topological analysis (Ibrahim ,et 

,al., 2020, Liu, et ,al., 2021). This process aids in determining crucial hydrological parameters 

related to streams, rivers, and watersheds. These parameters include curve number, area, lag-time 

for watersheds, and the routing model and duration for specific stream segments (Cotugno ,et ,al., 

2021, Bhusal ,et ,al., 2022). The Assessment of Science Integrating Point and Nonpoint Sources 

(BASINS) system, created by the US Environmental Protection Agency, was designed to 

amalgamate Geographic Information Systems (GIS), watershed tools, and various models like 

SWAT, MIKE SHE, and HMS. These models were utilized to quantify and assess the impacts of 

land-use alterations on a catchment's peak flow patterns (Yuan et al., 2020, Srinivas, et ,al., 2020, 

Liu ,,et al., 2021). Stream runoff and hydropower generation characteristics in arid regions vary 

across different climate types, from hot and dry to moderate or humid to warm conditions (Yang 

,et ,al., 2020, Annys ,et ,al., 2020). River discharge capacities play a significant role in influencing 

the output of hydropower, particularly under the impact of climate change (Maran ,et ,al., 2014, 

Qin ,et ,al., 2020). 
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2.4. Uncertainty from Global Climate Models with Emission Scenario 

   The uncertainties within (GCMs) primarily stem from inaccuracies in depicting climate 

processes (model physics) and flawed model structures. These issues hinder the models' ability to 

accurately capture short-term (interannual) and longer-term (decadal) variability in climate 

patterns (Alizadeh., 2022, Omid., 2022). Another significant source of uncertainty in all climate 

models arises from the challenge of accurately representing the complex interactions among 

different subsystems, including the atmosphere, hydrosphere, and lithosphere. These 

interconnections add layers of complexity and uncertainty to climate modelling efforts (Slingo & 

Palmer., 2011, Srikrishnan ,et, al., 2022). In several recent studies, there has been a notable 

emphasis on the differences in predicted climate changes among different Global Climate Models 

(GCMs). These variations are apparent in the expected alterations' scale and frequency, as 

delineated in the IPCC's 2021 report. Multiple studies have compared earlier iterations 

(CMIP3/CM1P2) of climate projections and more recent versions (CMIP4/CMIP5). These 

analyses have unveiled noteworthy discrepancies between the two sets of projections (Lutz ,et ,al., 

2013, Alves et al., 2016, Carvalho ,et ,al., 2022) . Even with advancements in enhancing model 

construction, the extent of uncertainties has shown minimal change, as noted in reports from the 

IPCC in 2014 and 2021. Although Global Climate Models inherently contain uncertainties, 

numerous techniques have been devised to measure and address them, all to generate reliable 

future projections. This principle is highlighted in studies conducted by (McSweeney ,et, al., 2015, 

Raju & Kumar., 2020) . For instance, recognizing the limitations of individual models in accurately 

simulating regional climatic processes, a pragmatic strategy involves combining projections from 

multiple (GCMs). This amalgamation produces an ensemble mean representing the most probable 

future climate scenario. Figure (2) demonstrates that uncertainty is also associated with the 

selection of parameterization used to depict specific processes in model construction, as discussed 

by (Tran ,et ,al., 2023). 
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Figure(2) : CM1P6 model-based time series of temperature and precipitation (historical and 

projections) from 2020 to 2100 relative to the 1980-2000 baseline for the SSPs scenarios. The 

shaded area represents the range of changes projected by the 20 models for each year. (Tran et al, 

2023). 

    The second significant source of uncertainty in emission scenario studies and simulations stems 

from predicting future environmental policies and the magnitude of greenhouse gas (GHG) 

emissions (Maier ,et, al., 2016, Aguiar ,et ,al., 2016, Ho ,et ,al., 2019). 
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2.5. Power Generation under Climate Change 

   The effects of global warming on water resources entail changes in the hydrological cycle and 

variations in water availability, affecting both river flows and the storage capacity of reservoirs 

(Chaturvedi ,et ,al., 2021, Kahaduwa & Rajapakse., 2022). Hydropower plants are susceptible to 

these alterations in water availability and the hydrological cycle (Falchetta ,et, al., 2019, Mtilatila 

et al., 2020, Almeida ,et ,al., 2021). The efficiency of reservoir operations is a fundamental 

requirement for effective hydropower production (Riggins., 2022). Climate change has led to 

significant shifts in temperature, precipitation, and streamflow patterns, exerting a considerable 

influence on hydropower projects. These alterations affect the design considerations for dams and 

reservoirs, as well as impacting their operational lifespans (Lu ,et ,al., 2020, Qin et al., 2020, Tariku 

et al., 2021). Reservoirs play a pivotal role in alleviating water scarcity within the system, ensuring 

a sustainable supply for hydropower generation (Brunner et al., 2019, Rafique et al., 2020) . 

Moreover, reservoir operating rules serve as commonly used guidelines for regulating basin 

releases, aiming to maximize the advantages a reservoir offers while upholding predetermined 

inflow and storage levels (Tegegne & Kim, 2020, Wang et al., 2020, Munir et al., 2022). As per 

the Working Group II Contribution to the IPCC AR6, the findings indicate anticipated risks in the 

near-term, mid-term, and long-term across various global warming scenarios. These risks 

encompass pathways that surpass a sustained 1.5°C global warming level, posing challenges under 

these conditions. 

2.6. Performance of Hydropower Generation 

   Historically, the assessment of reservoir performance amidst climate change and uncertainty has 

primarily focused on evaluating the reliability of inflow volume and timing (Chadwick ,et, al., 

2020, Ren ,et ,al., 2020, Mortezaeipooya ,et ,al., 2022). Apart from the conventional criteria, some 

researchers have introduced two additional metrics—resilience and vulnerability—to gauge 

diverse aspects and evaluate the performance of reservoirs (Thushara ,et ,al., 2019, Ren ,et .al., 

2020, Nguyen ,et ,al., 2020). Performance indices are computed using fundamental data tied to 

reservoir hydropower generation, encompassing metrics like the volume of water required and 

provided across all periods, the frequency of failures, and the magnitude of these failures 

concerning their duration and severity. Studies often employ monthly or yearly periods for these 

evaluations. Resilience and vulnerability serve as two critical criteria for assessing reservoir 

performance. Resilience measures the system's capacity for swift recovery, while vulnerability 

evaluates the potential severity of consequences in the event of failure. Indeed, there is a scarcity 
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of global studies dedicated to crafting indicators for assessing reservoirs, and those available often 

emphasize the monotonic trends related to the reliability and vulnerability linked to reservoir 

inflows (Nguyen et al., 2020, Bozorg et al., 2022, Tayyeh & Mohammed., 2024). Statistical indices 

have often been limited to a narrow scope, and they have yet to be extensively employed to 

investigate the performance behaviour of a hydropower, including aspects like resilience, and 

vulnerability, for evaluation and their correlation with the sources of uncertainty. According to an 

exhaustive review and the most up-to-date information available from ScienceDirect Figure (3) 

highlights a substantial body of research in power generation. However, it is noteworthy that these 

studies have yet to delve into modelling hydroelectric energy production from reservoirs within 

arid regions. This modelling approach considers all crucial factors, such as storage capacity, water 

levels, turbine count, and generation efficiency. It seeks to factor in the potential impacts of climate 

change on these reservoirs. Furthermore, this research intends to quantify generation efficiency 

using statistical metrics related to vulnerability and resilience while accounting for all sources of 

uncertainty from climate and hydrological modelling to provide a comprehensive and detailed 

understanding of this intricate phenomenon. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure(3): Previous studies based upon ScienceDirect data. 
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3. Conclusions   

   Global greenhouse gas emissions substantially impact hydroelectric power, both in the short and 

long term, regardless of whether it is applied on a large or small scale. Hence, comprehending 

strategies to sustain, minimize vulnerability, and optimize hydropower production amid the 

adverse impacts of climate change becomes crucial. Despite published successes in enhancing 

approaches to mitigate the adverse effects of climate change on water resources and hydropower, 

considerable uncertainties persist in hydrological processes due to climate change, subsequently 

influencing hydroelectric power generation . 

Indeed, enhancing methods for forecasting and predicting alterations in the hydrological regime 

resulting from climate-induced extreme events is crucial for better and more precise evaluations 

of hydropower development potential in adverse climate conditions. However, none of the large-

scale studies mentioned in this research encompassed the essential hydrographic conditions 

necessary for such assessments. Establishing general measures to mitigate the impacts of climate 

change proves challenging due to the diversity and distinctiveness of each hydropower station . 

Ultimately, it is crucial to intensify and regulate technological initiatives for hydropower 

management to safeguard the environment, ecosystems, and socio-economic sectors. This includes 

optimizing flood-control operations during high-flow periods and enhancing water usage systems 

during droughts. Climate change will impact hydropower development and sustainability, 

imposing a more significant strain on the global energy system. Nevertheless, with suitable 

mitigation and adaptation strategies, hydropower can serve as a support and catalyst for 

environmental and societal development . 
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