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Abstract         

          Designing water distribution networks is a difficult task with many search parameters and 

restrictions. Evolutionary algorithms have been widely used in this manner to minimize costs while 

satisfying pressure limits. A new hybrid evolutionary framework with four unique phases is proposed 

in this research. Reinforcement learning, an efficient artificial technique, was used in the first phase to 

improve the performance of pump stations. CMA-ES, a strong adaptive meta-heuristic for continuous 

optimization, was used in the second phase. An upward-greedy search phase to eliminate pressure 

violations comes next. Lastly, to minimize large pipes, a downward greedy search phase is employed. 

The hybrid method was applied multiple WDSs case studies in order to evaluate its efficacy. The 

findings show that on the majority of benchmarks, the new framework performs better than the 

previously used heuristics in terms of both optimization speed and network cost. 

Keywords: Water distribution network, reinforcement learning, CMA-ES, upward greedy algorithm, 

downward greedy algorithm
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 خوارزمية هجينة لتعزيز كفاءة محطات ضخ المياه وتحسين شبكات توزيع المياه 

  نور جميل كشكول*  

 الاستراتيجية، دائرة التخطيط والمتابعة، وزارة الموارد المائية قسم الدراسات

engineer.noorjamil87@gmail.com :البريد الالكتروني للمؤلف المراسل* 

 الخلاصة 

يعُدّ مهمة معقدة             المياه  البحثية. وقد تم استخدام  تصميم شبكات توزيع  المعايير والقيود  العديد من  التعامل مع  تتطلب 

الخوارزميات التطورية على نطاق واسع في هذا المجال بهدف تقليل التكاليف مع ضمان استيفاء الحدود المسموح بها للضغط. 

مرحلة الأولى، تم استخدام التعلم المعزز، وهو  يقدم هذا البحث إطارًا تطوريًا هجينًا جديداً يتألف من أربع مراحل متميزة. في ال

، وهي CMA-ES تقنية ذكاء اصطناعي فعالة، لتحسين أداء محطات الضخ. أما في المرحلة الثانية، فقد تم تطبيق خوارزمية

انتهاك الجشع بهدف تصحيح  التصاعدي  البحث  ذلك مرحلة  تلي  المستمر.  للتحسين  للتكيف  وقابلة  قوية  استدلالية  ات  طريقة 

الضغط. وأخيرًا، تم اعتماد مرحلة البحث التنازلي الجشع لتقليل أحجام الأنابيب الكبيرة. تم تطبيق المنهجية الهجينة على عدة 

دراسات حالة لشبكات توزيع المياه لتقييم كفاءتها. وقد أظهرت النتائج أن الإطار الجديد يتفوق على الخوارزميات المستخدمة  

 .لتحسين وتكلفة الشبكة في معظم معايير التقييمسابقًا من حيث سرعة ا

المفتاحية:   خوارزميةالكلمات  المعزز،  التعلم  المياه،  توزيع  التصاعدي،    ،CMA-ES  شبكة  الجشع  البحث  خوارزمية 

 .خوارزمية البحث الجشع التنازلي 
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1. Introduction 

          Amid the convergence of increasing population figures, changing climate patterns, rapid 

urban growth, and rising environmental deterioration, the world stage is witnessing the rise of 

complex water concerns. Countries, particularly those with advanced water infrastructure, must 

reevaluate their management techniques and infrastructure capabilities to handle the anticipated 

increase in water demands. Conventional methods of managing water resources typically focus 

on cost and quantity. However, to achieve the best and long-lasting distribution of water, it is 

essential to adopt a holistic strategy that considers all parties involved and recognizes the 

interdependence of essential resources. This comprehensive approach must include the 

expenses related to energy and food production, as well as the environmental effects, in 

acknowledgment of the complex network of resource interconnections. In addition, factors such 

as increasing population, changing climatic patterns, expanding metropolitan areas, and 

growing energy demands emphasize the necessity for complex decision-making frameworks. 

Therefore, it is crucial to carefully analyze the compromises involved in water management in 

order to promote sustainable resource conservation in the face of the increasing water shortage, 

both now and in the future (KULAT, 2017). 

          The current worldwide scenario is characterized by the interconnected influences of 

population growth and economic development, which have greatly increased the need for 

sufficient,   uncontaminated, and secure water supplies. The increasing demand for water 

presents a difficult challenge to current policies, strategies, frameworks, and initiatives for 

managing water resources and developing infrastructure on a global scale. This dilemma is 

particularly severe in regions that are dealing with water scarcity worsened by causes like 

climate change (V. A. Tzanakakis, 2020). 

          The Middle East and North African (MENA) region is known for its dry or semi-arid 

environments, resulting in substantial water scarcity. The shortage, which is especially 

widespread in the Middle East, has a vital role in determining regional stability and is an 

essential factor in promoting economic growth and prosperity (Al-Ansari N. A., 2013). 

          An illustrative instance can be observed in Iraq, where the consequences of drought 

caused by climate change are significant, worsening the already present problems of water 

scarcity. Due to its high susceptibility to water scarcity, Iraq is currently at a crucial point where 

the combination of population expansion, economic activities, and environmental pressures are 
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causing an increased demand for water resources. In Iraq, the drinking, agriculture, and 

industrial sectors are the main stakeholders that depend heavily on the supply of water. As a 

result, they are ready to experience the full impact of the negative consequences of climate 

change on water supplies. Iraq is currently facing the predicament of reduced water flow in the 

Euphrates River as a result of the construction of dams by Syria and Turkey along the Euphrates 

and Tigris Rivers. The decrease in flow is a substantial challenge for Iraq's water resources (Al-

Ansari N. , 2011). The construction of these dams in Iraq has resulted in a decrease in both the 

quantity and quality of its water, posing a significant challenge for the country (Ammar Hatem 

Kamel, 2013). This information raised additional concerns about future water allocations and 

their worrying implications for national security and policies. 

2. Previous studies 

          Few studies have concentrated on employing hybrid approaches, such as reinforcement 

learning, even if earlier research has improved utilizing evolutionary algorithms. The goal of this 

study is to create a more effective model that offers better solutions for water networks by fusing 

the CMA-ES algorithm with clever search strategies. 

1. Optimal Cost Design of the Water Distribution Network for Jableh City Using Genetic 

Algorithm and Harmony Search Algorithm. 

          In this study, the drinking water network in the city of Jableh was designed using the 

harmonic search algorithm (Harmony Search) and the genetic algorithm (Genetic Algorithm). The 

goal of the study was to come up with the best possible design that would save expenses while yet 

meeting hydraulic criteria ( 2020د. هناء سلمان,  ). 

2. Optimal Solution for Drinking Water Distribution Systems Using Genetic Algorithms. 

          In order to develop economical and effective designs, this study uses the Darwin Designer 

technique to apply genetic algorithms to determine the best solution for drinking water distribution 

networks ( 2012خليفة,  ). 

3. Evolutionary Machine Learning: Machine Learning Models Optimized and Trained 

Using Genetic Algorithms . 

          Genetic algorithms have been extensively employed to optimize machine learning models 

(Albu-Salih, 2023). Moreover, their applications have extended to various engineering domains, 

including water distribution network design . 
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4. Hybrid Genetic Algorithm for Optimal Design of Water Distribution Networks. 

          In order to achieve optimal water distribution network design with an emphasis on cost 

reduction and efficiency, this study proposes a hybrid framework that incorporates genetic 

algorithms and other methods (Edward Keedwell, 2005). 

5. Genetic Algorithm for Optimization of Water Distribution Systems . 

          Focuses on enhancing water distribution network design through the application of genetic 

algorithms. While making sure that hydraulic requirements, like water pressure in pipes, are 

satisfied, this study uses genetic algorithms to save costs and achieve the optimal water distribution 

within a given network (Khanna, 1999). 

3. Methodology 

3.1 Reinforcement learning  

          The term "reinforcement learning" is commonly used by researchers in artificial intelligence 

and engineering to refer to a particular approach to learning tasks and the algorithms developed 

for them. Reinforcement learning is based on the principle of reinforcement, which involves the 

idea that activities leading to favorable outcomes or progress in the current state are more likely to 

be repeated. This concept forms the basis for the most straightforward approaches in reinforcement 

learning. This concept embodies the fundamental principles of reinforcement learning, 

highlighting the process of enhancing or fortifying activities based on their outcomes, resembling 

how living organisms, including humans, acquire knowledge from past events and adjust their 

behaviors accordingly. Reinforcement learning is a framework that allows computers to learn and 

make decisions independently. This is achieved by having the machines interact with their 

environment and learn from the results of their actions in an iterative manner (Barto, 1997). 

 

 

 

 

 

 

 

 

  Figure (1): Reinforcement learning 

Source: ArcMap software/Landsat 9 Images 
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          One of the uses of Reinforcement Learning is in the water sector, where Reinforcement Learning 

(RL), specifically Deep Reinforcement Learning (DRL), has great potential in tackling urgent water 

distribution issues like Water Scarcity. Due to water scarcity impacting billions of people worldwide 

and an expected 40% increase in demand by 2030, conventional water conservation methods are proving 

unsustainable and jeopardizing clean water supply. Deep Reinforcement Learning (DRL) is a promising 

approach that utilizes advanced neural networks to address complicated challenges in the real world. It 

can learn from past experiences and is particularly effective in optimizing water management in urban 

water systems. As the study in this field grows, DRL algorithms integrated with computational 

techniques provide opportunities to overcome obstacles and enhance outcomes, indicating a possible 

revolution in water distribution networks (Ahmed Negm, 2024). 

3.2 Artificial Neural Networks (ANNs) and Their Mechanism 

          Computational models known as artificial neural networks (ANN) are modeled after the 

composition and operation of biological neural networks seen in the human brain. They are extensively 

employed in many different applications, such as forecasting, data classification, pattern detection, and 

decision-making. ANN is capable of intelligent prediction, complicated pattern recognition, and data 

learning. 

          Artificial Neural Networks (ANN) function by simulating the information processing capabilities 

of the human brain. They are made up of interconnected layers of neurons that use activation functions 

and weighted connections to change incoming data. Data enters the network through the "input layer " 

at the start of the operation. After that, it moves via "hidden layers", where neurons use  "activation 

functions" (like Sigmoid or ReLU) to make mathematical modifications. The "output layer" is where 

the final output is created. The network uses "backpropagation" to modify its weights during training, 

reducing mistakes via methods like Gradient Descent. An essential part of artificial intelligence, ANN 

is utilized extensively in image identification, financial forecasting, and medical diagnostics. 

3.3 Artificial Neural Network Structure 

          Multiple layers of interconnected nodes, or neurons, make up an ANN. Each layer processes 

incoming data in a different way. In an ANN, the main layers are: 

1. Input Layer: External sources provide raw data to this layer. A feature of the input data is represented 

by each neuron in the input layer. 
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2. Hidden Layers: These layers employ activation functions and carry out weighted calculations to 

process the input data. The capacity of the model to learn intricate patterns is determined by the quantity 

of hidden layers and neurons. 

3. Output Layer: Using the data that has been analyzed, this layer generates the final classification or 

prediction. 

ANN's Operational Mechanism is weighted connections between linked neurons allow ANNs to 

transmit signals (Abraham, 2005). 

3.3.1 Enhancing Pumping Stations and Water Distribution Networks Using ANN 

          Because they optimize operations, lower energy usage, and guarantee effective water delivery, 

artificial neural networks, or ANNs, are essential for enhancing the performance of pumping stations 

and water distribution networks. 

1. Enhancing the Efficiency of Pumping Stations: 

In order to identify trends and inefficiencies, ANNs examine operational data in real time, including 

pump efficiency, flow rates, pressure levels, and energy use. By forecasting ideal operating 

circumstances, the network modifies pump schedules and speeds to save energy consumption and 

preserve sufficient water pressure. Predictive maintenance techniques that lower downtime and repair 

costs are made possible by ANNs' ability to recognize possible failures or performance degradation 

using past data. 

Artificial neural networks, or ANNs, are crucial for improving the efficiency of pumping stations and 

water distribution networks because they maximize operations, reduce energy consumption, and ensure 

efficient water delivery. 

2. Improving Water Distribution Networks: 

In order to reduce leaks and pressure losses, ANNs help optimize the network's water pressure and flow 

distribution. Better resource allocation is made possible by ANNs' ability to predict seasonal variations 

in water demand by combining environmental factors and satellite data. 

Real-time control systems are supported by ANN models, which dynamically modify pumping stations 

and valves to effectively meet changing water demands. 

          These uses of ANN-based optimization guarantee intelligent, sustainable, and reasonably priced 

water management solutions for contemporary water distribution systems. 
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3.4 Hybrid algorithm 

          The proposed hybrid algorithm depends mainly on the CMA-ES. The three main processes of 

CMA-ES are recombination, mutation, and selection. While the operator of selection is used for 

selection, recombination and mutation are used for search space exploration and the creation of genetic 

variants.  Taking advantage of and arriving at the best answer. In CMA-ES, a multivariate Gaussian 

distribution is used, and the mutation operator is important. A comprehensive elucidation of several 

selection operators is exposed in (SCHWEFEL, 2002). As a deep local search that is equipped with a 

self-adaptive method for selecting an appropriate vector of mutation step sizes (σ) rather than having 

only one global mutation step size, CMA-ES can, in fact, be a good candidate for investigation and 

exploitation. This is due to the fact that tackling high-dimensional problems with a single step size is 

inefficient. Acceptable convergence speeds and diversity are produced by applying a multivariate 

Gaussian distribution with the appropriate σ and mean sizes (Nikolaus Hansen S. K., 2004). 

          Based on the variations in the mean values of two sequential generations, the covariance matrix 

is calculated. In that instance, it anticipates that there will be enough data in the present population to 

estimate the correlations favorably. In order to expand the multivariate Gaussian distribution in the 

proper direction toward the global optimum, the rotation matrix will be derived from the covariance 

matrix after it has been calculated. In order to obtain an orthogonal basis for the matrix, it can be 

achieved by performing an eigen-decomposition of the covariance matrix (Nikolaus Hansen A. A., 

2014). The initial stage involves applying a CMA-ES, which plays a crucial function. The CMAES is a 

self-adaptive stochastic approach whose performance can be competitive when the fitness functions are 

nonlinear or non-convex. Covariance matrix adaptation that is restricted into a multivariate normal 

distribution cooperates well with the CMA-ES. The covariance matrix adaptation serves as a means of 

approximating the inverse Hessian matrix, similarly to a quasi-Newton approach applied to the 

covariance matrix.  

          The main purpose of the second portion of the suggested hybrid architecture is to engage in two 

distinct direct search strategies for altering the CMA-ES outcomes, notwithstanding the discrete pipe 

sizes of the networks. When compared to other EAs, CMA-ES can identify extremely inexpensive 

network design configurations; nevertheless, these inexpensive suggested layouts are impractical due 

to nodal pressure head restrictions. Thus, an Upward Greedy Search technique contributes to the CMA-

ES in order to compensate for the issue. By increasing the discrete size of pipe diameters based on a 

greedy selection of those solutions with the largest reduction in the sum of pressure violations for the 
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least amount of money, the Upward Greedy Search increases the amount of the CMA-ES achieved 

solutions that are not feasible and pushes the infeasible layouts toward the feasible area. 

Notwithstanding all of Upward Greedy Search's advantages, occasionally it's suggested fixes need to 

be improved due to avaricious selection behaviors that disregard the circumstances of the past or the 

future. In order to lower the additional cost of some of the produced solutions, a third phase is proposed. 

This section consists of an additional Greedy Search concept. A downward greedy search is the concept 

behind the third part of the hybrid framework. The Downward Greedy Search's primary goal is to 

smooth the pipe cost in relation to the limitations by gradually reducing each pipe's diameter. Stated 

differently, the Downward Greedy Search algorithm seeks enhancements that result in the lowest 

number of pressure violations while achieving the greatest possible pipe cost reduction. 

3.5 Model Inputs 

          Important inputs for effective decision-making in water distribution networks will be 

incorporated into the model. These inputs include network pressure levels, pumping station 

performance, and daily water consumption data. The Ministry of Water Resources’ records, which 

provide comprehensive details of water use trends and pumping station operations, are among the 

reliable sources from which data for these inputs are collected. The model’s ability to optimize water 

distribution in real time will also be enhanced by incorporating satellite data, such as those from 

Landsat7 or Landsat8, which will provide temporal and spatial insights into environmental conditions 

and water availability. 

4. Results and Discussions 

          The first phase of our system is the reinforcement learning algorithm for the pump stations where 

it decreases power usage and water waste, we tested the system figure (2) by running a simulation with 

simulation time of 7 days. The water demand during the simulation can be seen in figure (3), and figure 

(4) shows the performance differences between a schedule system for the water station and the 

reinforcement learning model where we can see that the model performs better than scheduling because 

it can adapt to the changes in water demand. 
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Figure (2): the reinforcement learning algorithm for the pump stations 

stations 

Source: ArcMap software/Landsat 9 Images 
 

Figure (3): the results of the simulation 

Source: ArcMap software/Landsat 9 Images 
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          As for the second phase two well-known case studies of water distribution networks—the 

Balerma Network (BN) (Juan Reca, 2006) and the New York Tunnels (50NYTP) (Feifei Zheng, 

2011) —have been used to assess the efficacy of the suggested hybrid structure. Table (1) displays 

the case studies' specifics. 

Table (1): Studies specifics. 

Network Variables Options Nodes Space size 

NYTP50 1050 16 1000 2.12 × 101264 

BN 454 10 447 10454 

 

4.1 Case Study One: 50NYTP 

          One tank connects fifty individualized NYTP in terms of hydraulical equations that make up 

the NYTP50 (Feifei Zheng, 2011). With the same design options as the original NYTP, this issue 

can serve as a large-scale optimization benchmark with a decision variable number of 50 × 21. The 

Figure (4): the results of the simulation 

Source: ArcMap software/Landsat 9 Images 
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most well-known design cost comes to $1932 million. Table (2)  illustrates that, using our suggested 

algorithm of ten independent runs with a uniform random scenario for initializing the choice 

variables and a population size of 500, the best and average founded design costs are $2021(M) 

and $2030(M). These somewhat near-optimal designs outperform the 50NYTP designs from (Feifei 

Zheng, 2011) by a significant margin. Comparing the suggested hybrid method to earlier 

optimization techniques and the decision variable length, it can appropriately explore a large search 

space in a small number of repetitions. 

 

Table (2): proposed method vs older method on the NYTP50 

algorithm No. of runs Best sol.($ 

M) 

Avg Cost ($ 

M) 

Max no. of 

evaluations 

GA[12] 100 2238 2321 40.0 × 106 

Proposed 

method 

20 2021 2030 1.0 × 106 

4.2 Case Study Two: BN 

         The Balerma Network (BN), an irrigation WDS founded in the Spanish region of Almeria, is 

the subject of the second case study (Juan Reca, 2006). Four reservoirs, 454 pipes, eight loops, and 

443 demand nodes make up its parts. Ten PVC commercial pipes in diameters ranging from 125 to 

600 mm are available. Consequently, the search space is 10454, classed as a large-scale 

optimization issue, and is significantly larger than the preceding three case examples in this work. 

A minimum of 20 m of nodal pressure is needed. Additional information and pipe costs are provided 

in the reference (Juan Reca, 2006). Zheng et al. have shown that the BN's present optimal 

configuration is located at 1.923 million. The DE and nonlinear programming are combined to 

create this functional design (NLP-DE). The average performance of the suggested hybrid 

framework is unquestionably superior to all earlier approaches in terms of quality, efficiency, and 

convergence rate, as shown by the findings from Table 3. At 1.894 million, the proposed solution 

is less expensive. 
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Table (3): The findings of the average performance of the suggested hybrid framework. 

Algorithm Number 

of runs 

Best   

solution 

($M) 

Success 

rate(%) 

Average 

Cost ($M) 

Avg 

evaluations 

Max no of 

evaluations 

HS [12] NA 2.018 0.0% NA 10.00 × 106 10.0 × 106 

GAs [13] 10 2.061 0.0% NA NA 2.00 × 106 

CS [14] 10 2.036 0.0% 2.079 4.50 × 106 5.0 × 106 

HD-DDS-2 [15] 10 1.956 0.0% NA 30.00 × 106 10.0 × 106 

DE3 [16] 10 1.982 0.0% 1.986 9.21 × 106 10.0 × 106 

SADE [17] 10 1.983 0.0% 1.995 1.20 × 106 1.3 × 106 

CSHS [14] 10 1.988 0.0% 2.031 3.00 × 106 5.0 × 106 

DE [17] 10 1.998 0.0% 2.031 2.30 × 106 2.4 × 106 

GENOME [11] 10 2.302 0.0% 2.334 10.00 × 106 10.0 × 106 

NLP-DE2 [16] 10 1.923 10.0% 1.927 1.428 × 106 2.0 × 106 

HD-DDS-1 [15] 1 1.941 0.0% NA 30.00 × 106 30.0 × 106 

NLP-DE1 [16] 10 1.956 0.0% 1.957 4.12 × 103 1.0 × 106 

GHEST[18] 10 2.002 0.0% 2.055 0.25 × 106 10.0 × 106 

Proposed 10 1.894 0.0% 1.900 0.84 × 106 2 × 106 

 

          Table (3)'s results show that, aside from the exceptional BN designs discovered by the CMA-

ES (Continuous), average discrete best-founded BN designs outperform the current techniques. 

Sixty percent of the computational cost is saved. This feature shows how well the CMAES-GSU 

and CMAES-GSU -GSD approaches can be used, and it also shows that the suggested optimization 

framework can find decent quality solutions with much increased computational effectiveness when 

dealing with large-scale WDS. It is observed that Table (3) shows that the suggested hybrid 

framework is unable to defeat the NLP-DE2. 

          It is evident that, as compared to all previous approaches with smaller computational budgets, 

the suggested hybrid method achievements are positioned within overall lower cost BN 

architectures. Meanwhile, when the best solution cost (near-optimum) is $1.961 million and the 

average evaluation number is just 0.56 × 106, the discrete CMA-ES is ranked greatest in terms of 

convergence speed. It is true that the discrete CMA-ES's suggested solutions are not of the highest 
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quality, but they can converge to semi-optimal solutions 18, 8, 18, and 16 times quicker than the 

HS, CS, GENOME, and DE3, in that order. 

5. Conclusions 

          This study presents a novel hybrid evolutionary framework for networks of water delivery. The 

proposed structure is divided into four separate phases, each of which adds to the process's overall 

efficacy and efficiency. The first phase's application of reinforcement learning shows how it can 

improve pump station performance and cut down on water waste and power consumption. This novel 

method shows promise in resolving pressing water distribution problems like water scarcity, especially 

when paired with deep reinforcement learning. Subsequently, the CMA-ES algorithm is integrated, 

which successfully explores the search space and produces near-optimal solutions, further improving 

the optimization process. Because of its adaptive characteristics, CMA-ES can effectively handle 

challenging, high-dimensional optimization issues, which makes it an important part of the system. 

Later stages of the framework's implementation of upward and downward greedy search algorithms 

help to improve the CMA-ES solutions, especially when it comes to minimizing pipe sizes and handling 

pressure violations. The suggested ideas' cost-effectiveness and viability are enhanced by these extra 

search techniques. The hybrid framework's superiority over conventional heuristics and optimization 

techniques in terms of optimization speed and network cost is demonstrated by the examination of the 

framework through several case studies. The obtained results demonstrate the suggested framework's 

capability to address practical issues in water distribution network design, particularly in areas with 

limited infrastructure and water availability.  

          Essentially, this study establishes the foundation for creating novel approaches to tackle the 

intricate dynamics of managing water resources, emphasizing the promotion of sustainability, 

effectiveness, and fair allocation of water resources. The suggested hybrid framework presents a viable 

way to address the various demands of communities and industry in the present and the future while 

also optimizing water distribution networks by utilizing developments in artificial intelligence and 

evolutionary algorithms
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