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Abstract 

        This study employs remote sensing techniques supported by MATLAB-based analysis to 

conduct a temporal comparison of key vegetation indices—including the Normalized Difference 

Vegetation Index (NDVI), Leaf Area Index (LAI), Soil Adjusted Vegetation Index (SAVI), Green 

Chlorophyll Index (GCI), Enhanced Vegetation Index (EVI), and Normalized Difference Water 

Index (NDWI)—for the years 2016 and 2019. Landsat 8 satellite imagery, obtained from the 

United States Geological Survey (USGS), was analyzed to detect spatial and seasonal changes in 

vegetation cover across irrigation zones in the Abu Ghraib district. Descriptive statistics (mean, 

standard deviation), Pearson correlation coefficients, and NDVI overlap computations were used 

to assess the distribution of vegetation indices and detect temporal variations in vegetation health. 

The findings indicate significant vegetation index change in 2019 over 2016 with significant 

vegetation index recovery in dry times indicating the success of the irrigation project in increasing 

the vegetation resilience. This research answers and presented quantitative information about 

vegetation patterns and can justify data-based agricultural surveillance and sustainable resource 

control management in semi-arid landscapes. 

Keywords: Remote Sensing Indices, MATLAB, Temporal Comparison, Landsat 8, GIS. 

 

 

 

 



Journal of Water Resources and Geosciences 

Vol. 4, No.2, 2025 

 Page 53 of 158 
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 الخلاصة

زمنية لإجراء مقارنة  MATLAB توُظّف هذه الدراسة تقنيات الاستشعار عن بعُد مدعومة بتحليل عبر برنامج          

 (LAI) ، ومؤشر مساحة الأوراق(NDVI) لمجموعة من مؤشرات الغطاء النباتي، بما في ذلك مؤشر الفرق النباتي المعياري

 ، ومؤشر الغطاء النباتي المحسَّن(GCI) ، ومؤشر الكلوروفيل الأخضر (SAVI) ، ومؤشر الغطاء النباتي المعدل للتربة

(EVI) ومؤشر الفرق المائي المعياري ، (NDWI)  تم تحليل صور القمر الصناعي2112و 2112للعامين . Landsat 8 ،

، لرصد التغيرات المكانية والموسمية في الغطاء النباتي ضمن  (USGS) والمأخوذة من هيئة المسح الجيولوجي الأمريكية

اري(، وتحليل الارتباط، تم استخدام الإحصاء الوصفي )مثل المتوسط والانحراف المعي .مناطق الري في قضاء أبو غريب

أظهرت النتائج زيادات  .لتقييم توزيع المؤشرات النباتية والتغيرات الزمنية في صحة الغطاء النباتي NDVI وتحليل تداخل

، مما يدل على فعالية مشاريع الري في تعزيز مرونة 2112مقارنةً بعام  2112ملحوظة في قيم المؤشرات النباتية خلال عام 

تقدمّ هذه الدراسة رؤى كمية حول ديناميكيات الغطاء النباتي، وتدعم التوجهات المستقبلية .اتي خلال المواسم الجافةالغطاء النب

 نحو مراقبة زراعية دقيقة وإدارة مستدامة للموارد الطبيعية في المناطق شبه الجافة.

 .، نظم المعلومات الجغرافية Landsat 8،ةلزمني، المقارنة اMATLAB: مؤشرات الاستشعار عن بعد، الكلمات المفتاحية
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1. Introduction 

          One of the root factors of socio-economic development and environmental stability 

is agriculture, especially in the arid and semi-arid regions with limited water resources 

which limit the growth of plants and yields. The variability of rainfall is one of the most 

important environmental considerations as it defines the density of vegetation, the crop 

production, and the general well-being of the ecosystem, coupled together with climate 

change which masquerades rainfall to become unpredictable, there is need to develop an 

effective monitoring strategies. Remote sensing methodologies notably application of 

satellite-based vegetation indicators especially normalised difference vegetation index 

(NDVI) and soil-adjusted vegetation index (SAVI) have been found to be useful in the 

mapping of vegetation dynamics as well as evaluation of earth cover transformation in 

drylands. As an example, Attafi et al. (2021) revealed close interrelations between 

Standardized Precipitation Index (SPI) and NDVI in southern Iraq, pointing out the 

vegetation deterioration over the periods of droughts. In a like manner, Gaznayee et al., 

(2022) accessed Landsat and MODIS data to show cutbacks of up to 33 percent in NDVI 

in dry periods in the Kurdistan Region of Iraq. In previous research experiences, 

(Ibrahime (2008)) used NDVI in order to track down the degradation of the vegetation in 

the semi-arid areas and with this they were able to define the relationships that do exist 

between varies proceeds of the vegetation and climate variability. Najeeb (2013) applied 

multispectral Landsat data and Soil Adjusted Vegetation Index (SAVI) to Baghdad and its 

environs in monitoring the density of plants and change in land cover and confirmed the 

usefulness of remote sensing in the monitoring of agriculture. The recent research by (Al-

Hamdani and Al-Jibouri (2023), Al-Ahealy et al., 2024) used Sentinel-2 dataset to 

examine desertification patterns and vegetative health in the Al-Najaf province in Iraq, 

which notices the tendency toward the expansion of desertification and vegetation stress. 

Irrespectively of these developments, studies directly based on the rainfall-vegetation 

relationships at the local level in the area of Abu Ghraib are scarce that may be attributed 

to the occurrence of extreme conditions like droughts and floods, which the area is prone 

to during the various seasons. This paper fills this gap by using temporal spatial analysis 

of satellite-based vegetation indices that are based on MATLAB to explain how rainfall 

variability affects vegetation dynamics in Abu Ghraib, and thus contributing to the rising 

agricultural water management and climate adaptation strategies in this semi-arid terrain. 
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2. Remote Sensing and Vegetation Indices 

         Remote sensing has transformed monitoring of vegetation issues into putting in 

place scalable, non-invasive, and repeatable ways of measuring the health of plants, 

canopies structure, and their water content in different landscapes. Conventional 

vegetation indices (VIs) including Normalized Difference Vegetation Index (NDVI), 

Soil-Adjusted Vegetation Index (SAVI), Enhanced Vegetation Index (EVI), and 

Normalized Difference Water Index (NDWI) have been used extensively to determine the 

greenness of the vegetation, the biomass, chlorophyll and moisture stress levels of the 

vegetation as well (Xue & Su, 2024; The Agriculture Magazine, 2024). These indices 

however have various challenges such as that of soil background effect, atmospheric 

interference and saturation in dense vegetation among others, which can restrict their 

sensitivity and accurateness (NASA MODIS, 2024). 

        These might be overcome by recent developments, which have integrated VIs into 

artificial intelligence (AI) and machine learning (ML). These allow a more detailed 

analysis of complicated spectral data. As an example, deep learning-based models, which 

are trained with multispectral satellite data, have enhanced early crop yield measurement 

and detection of vegetation stress adopting more subtle spectral dimensions compared to 

the conventional indices (Janga et al., 2023; Hu et al., 2024). The explainable AI methods 

have also advanced the design of VI by determining the most informative spectral bands, 

which could be used to create customized indices, which are more effective than generic 

indices in particular crop mapping propositions (Janga et al., 2023; arXiv, 2024). Further, 

integration of optical and radar remote sensing data by means of AI frameworks addressed 

the problem of cloud cover and amplified structural vegetation characterization (Hu et al., 

2024). 

In spite of these technological advances, significant studies are still being carried 

out on large homogenous areas without taking into account the spatial heterogeneity and 

time complexity of semi-arid landscapes because vegetation responses to rainfall 

variability are highly localized and non-linear (Zeng et al., 2024; Farmonaut, 2025). Most 

of the surveys in the area of Abu Ghraib, Iraq, located in a hotspot, where the weather 

alternates between droughts and floods, lack studies in combining AI-optimized VI with 

ground validation of it on the ground. In contrast to the previous studies in the order of 



Journal of Water Resources and Geosciences 

Vol. 4, No.2, 2025 

 Page 56 of 158 

implementation of standard VIs or global AI, valuation is done with the help of temporal-

spatial analysis of several VIs based on MATLAB that has been calibrated specifically 

for the climatic and land use of Abu Ghraib. The strategy seeks to enhance the power of 

identifying changes in vegetation induced by winds and rains and enable flexibility in 

agricultural water management in the face of climate uncertainty. 

           In addition, spatial decision support with Geographic Information Systems (GIS) 

interwoven to remote sensing and AI provides precise agriculture since variable-rate 

irrigation and early signs of stress can be applied (Farmonaut, 2025; TERI, 2024). This 

work helps in further development of this new direction by integrating higher-end VI 

analysis, AI knowledge, and localised calibration to increase vegetation monitoring in 

difficult semi-arid terrain, closing an essential option and methodological vacuum. 

2.1. Normalized Difference Vegetation Index (NDVI) 

       It is an indicator used to estimate the density of vegetative plants on lands and plants, 

it is considered as an important indicator in environmental sciences, agriculture, and 

remote sensing. NDVI is calculated using visible and near-infrared radiation data, and 

gives an idea of the amount of chlorophyll present in plants. The index of natural change 

in vegetation cover is one of the most widely used natural indicators in the field of 

analyzing satellite images and studying vegetation cover, fires, desertification, landslides 

and other natural phenomena. It is also a means of studying the changes that occur in 

vegetation cover over time. It also gives us the health status of the plant and the value of 

vegetation cover in any area and the rate of crop success or failure (Adisti & Sunkar, 

2021). 

        The NDVI index is a useful method for monitoring plants. It relies on an equation 

based on the relationship between near infrared rays (NIR) and visible red rays (R). This 

relationship is due to the high plant reflectivity in the short infrared range and the low 

plant reflectivity in the short infrared range. Visible red rays: the third band represents red 

rays with a wavelength ranging from 0.63- 0.60 micrometers, through which one can 

distinguish between bare and green areas, while the fourth band represents short infrared 

rays with a wavelength ranging from 0.90- 0.76 micrometers, through which can monitor 

density and distribution of vegetation and to distinguish between plants, soil and water ( 

Istanbuly & Thabeet, 2020). And it is found by this relation: 



Journal of Water Resources and Geosciences 

Vol. 4, No.2, 2025 

 Page 57 of 158 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅−𝑅𝑒𝑑)

(𝑁𝐼𝑅+𝑅𝑒𝑑)
                                                                           (1) 

2.2. Normalized Difference Water Index (NDWI) 

         It is a remote sensing index used to identify the presence of water bodies in satellite 

imagery. It's particularly useful for distinguishing water bodies from other types of land 

cover, such as vegetation or soil. NDWI is calculated using the following formula: 

𝑁𝐷𝑊𝐼 =
(𝑁𝐼𝑅−𝑆𝑊𝐼𝑅)

(𝑁𝐼𝑅+𝑆𝑊𝐼𝑅)
                                                                         (2) 

Where: 

SWIR is the Shortwave Infrared band of the satellite imagery. 

NDWI values typically range from -1 to 1, with higher values indicating a higher 

likelihood of water presence. However, it's important to adjust the threshold according to 

the specific characteristics of the imagery and the study area. NDWI is widely used in 

various applications such as water resource management, environmental monitoring, and 

land cover classification (Szabo & Gacsi, 2016). 

2.3. Leaf Area Index (LAI) 

           The Leaf Area Index (LAI) is a dimensionless quantity used to characterize the 

leafiness of a plant canopy. It represents the one-sided green leaf area per unit ground 

surface area. In simpler terms, LAI tells you how much leaf area is present per unit of 

ground area (P´erez & Coma, 2022). The following relationship express the LAI: 

𝐿𝐴𝐼 =
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛
× 𝐿𝐴𝐼𝑚𝑎𝑥                                              (3) 

Where: 

𝑁𝐷𝑉𝐼𝑚𝑖𝑛, 𝑁𝐷𝑉𝐼𝑚𝑎𝑥  are the minimum and maximum NDVI values, respectively, 

observed in the scene. 

𝐿𝐴𝐼𝑚𝑎𝑥 is the maximum LAI value expected for the vegetation type. 

2.4. Soil Adjusted Vegetation Index (SAVI) 

          NDVI is non-linear relationship with biophysical characteristics, and sensitivity to 

soil background is the major drawback. Minimizing the effects of external factors from 

spectral vegetation indices a transformation technique is presented. It involves the red and 

NIR spectral bands and the graphically transformation involves the shift in origin of NIR 
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and Red reflectance in vegetated canopies (panek & Gozdowski, 2020). This 

transformation eliminates soil influences in indices. 

𝑆𝐴𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿)
× (1 + 𝐿)                                                         (4) 

Where: 

NIR and RED are the reflectance in spectral band 

L is the parameter which is constant value (usually 1). 

Three values of the soil factors were used for SAVI calculation.  

2.5. Green chlorophyll indicator (GCI) 

        An indicator used in the environmental sciences, agriculture, and remote sensing to 

evaluate the content of vegetative plants in different regions. GCI is one of the simple and 

effective indicators for evaluating vegetation density and vegetation level. It measures the 

ratio of green to red bands in the image. Generally, green content in the image represents 

the density of vegetative plants, while red is used to indicate to the non-vegetative 

elements such as bare ground or trees. GCI value is used to estimate vegetation activity 

and track vegetation changes over time. It can also be used to evaluate aerial and satellite 

images to understand the distribution of vegetative plants in different regions, determine 

planting areas, and estimate agricultural productivity. Although simple, it is a useful tool 

for analyzing visual data and helping to understand environmental dynamics and 

agricultural needs (Isioye & Akomolafe, 2020). The following equation represent how to 

calculate GCI, where Green is the green band. 

𝐺𝐶𝐼 =
𝑁𝐼𝑅−𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅+𝐺𝑟𝑒𝑒𝑛
                                                                             (5) 

2.6. Enhanced Vegetation Index (EVI) 

         It's a vegetation index designed to minimize the influence of atmospheric conditions 

and to provide improved sensitivity in high biomass regions. It's particularly useful in 

areas with dense vegetation cover, such as tropical forests (Halos & Abed, 2019). The 

formula for Enhanced Vegetation Index (EVI) is: 

𝐸𝑉𝐼 = 𝐺 ×
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝐶1 × 𝑅𝑒𝑑 − 𝐶2 × 𝐵𝑙𝑢𝑒 + 𝐿
                                 (6) 
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Where: 

Blue is the blue band. 

G is a gain factor (usually 2.5). 

𝐶1𝑎𝑛𝑑 𝐶2  are coefficients that correct for aerosol influences on the red band and for 

background brightness effects, respectively. 

EVI was specifically developed to improve sensitivity over high biomass regions, reduce 

the influence of atmospheric conditions (such as aerosols and clouds), and minimize soil 

background noise. It's widely used in remote sensing applications, especially for 

monitoring vegetation health and dynamics on a large scale. 

3. Statistical calculations 

3.1. Box and Whisker Plots 

         We used this technology to analyze whether 2016 or 2019 had higher values. By 

using box and whisker plots we visually. Compared the data distributions, for the two 

years. A boxplot, also known as a box and whisker plot offers a way to show the tendency 

spread and any outliers in the dataset. Each boxplot has elements; the line in the middle 

of the box shows the value, which is the midpoint of the data. The edges of the box 

indicate the upper quartiles showing where 25% of data falls on each side. The whiskers 

extend from these edges to show the maximum values of data excluding outliers. Outliers 

are displayed as points on the plot indicating values that significantly differ from the trend 

of data. By comparing box and whisker plots for 2016 and 2019 we could identify trends, 

variations and differences, in how data was distributed between those two years. Figure 

1 shows an anatomy for box and whisker diagram (Ramachandran, K. M., & Tsokos, C. 

P. (2020)). 

 

Figure 1: Box and whisker diagram. 



Journal of Water Resources and Geosciences 

Vol. 4, No.2, 2025 

 Page 60 of 158 

3.2. Descriptive statistics 

          The descriptive statistics are numerical values used to describe dataset properties. 

Examples of the commonest descriptive statistics include the mean which gives an 

average value for the data, the standard deviation that is the measure of dispersion or 

scattering of data points around a mean, and correlation coefficient measures strength and 

direction between two variables. 

          Descriptive statistics can be useful in comparing different years’ data e.g. 2016 to 

2019 as it can provide insights into how various factors have changed over time. For 

example, by calculating the mean values for some variables in both years we can see if 

any significant changes have occurred. In addition, comparison of standard deviations 

will help us understand whether there has been an increase or reduction in variability of 

the data. Finally, examination of correlation coefficients between relevant variables will 

tell us if their relationships have changed. 

            In general terms therefore, descriptive statistical summarize and give meaning to 

complicated datasets thus assisting in discovering patterns as well as differences among 

different time frames such as 2016 and 2019. These findings may offer guidance for 

decision-making processes across several fields including business and economics; social 

sciences etc (Ramachandran, K. M., & Tsokos, C. P. (2020)). 

 

4. Study area 

           Abu Ghraib area holds significant importance for remote sensing studies during 

both the dry and flood seasons. This significance arises from several factors: Firstly, the 

region experiences volatile weather changes, including extended dry periods and seasonal 

floods, providing a unique opportunity to investigate their impact on vegetation. 

Secondly, Abu Ghraib’s diverse environment—encompassing bodies of water, arid lands, 

and green spaces—allows for the analysis of remote sensing variables within a 

multifaceted environmental context. Thirdly, economic activities in the area heavily rely 

on agriculture and water resources, making the study of remote sensing data crucial for 

enhancing natural resource management and boosting agricultural productivity. Lastly, 

Abu Ghraib serves as an ideal setting to study the effects of climate change on vegetation, 

helping us understand how these changes influence the environment and local 

communities. In summary, exploring remote sensing in the Abu Ghraib area sheds light 
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on environmental and agricultural transformations within the dynamic context of 

changing environmental diversity impacted by drought and flood seasons (Mageed et al., 

2025). 

         Abu Ghraib area is located in the west of Baghdad City, between two latitudes (33.8-

33.25) and longitude (43.50-44.12) to the east. It is bordered by Al-Kadhimiyah to the 

north, Al- Karkh to the east, Al-Mahmoudiyah to the south, and to the west and south by 

Al-Fallujah and Euphrates River, 80% of Abu Ghraib district is considered as agricultural 

land, Figure (2).  

 

Figure 2: Location map of the study area. 

 

5. Materials and Methods 

       The study has applied an observational image methodology to determine vegetation 

dynamics change in Abu Ghraib district with reference to multispectral satellite data. The 

study is aimed at comparing the state of vegetation in 2016 and 2019 years, specifically 

looking at the existence of a seasonal change between winter and summer. MATLAB 

R2024a was used to perform all image processing, vegetation index calculation as well 

as all the statistical analyses. 

5.1. Study Area and Temporal Scope 

        This research was carried out in the region of Abu Ghaill located in the west of 

Baghdad in the country of Iraq and whose climate condition is that of semi-aridity in 
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which agricultural activities still dominate and in which the area is seasonally prone to 

droughts and floods. It was decided to analyse two seasons: 

1. Winter seasons: December to February 

2. Summer seson: June to August 

          The temporal comparison was intended to evaluate changes in vegetation in two 

different years, when the weather conditions were opposite; these were 2016 and 2019. 

5.2. Satellite Imagery Acquisition 

        Landsat 8 Operational Land Imager (OLI) data were sourced from the USGS Earth 

Explorer platform. The following criteria guided image selection: 

1. Cloud cover <10% 

2. Complete spatial coverage of the study area 

3. Seasonal representation aligned with the defined temporal scope 

The following spectral bands, each with a spatial resolution of 30 meters, were utilized: 

1. Band 2 (Blue): 0.45–0.51 µm 

2. Band 3 (Green): 0.53–0.59 µm 

3. Band 4 (Red): 0.64–0.67 µm 

4. Band 5 (Near-Infrared): 0.85–0.88 µm 

5. Band 6 (Shortwave Infrared): 1.57–1.65 µm 

Images were acquired for both the winter and summer seasons of 2016 and 2019. 

5.3. Image Preprocessing 

Image preprocessing was conducted in MATLAB using the following steps: 

1. Image Loading: Multispectral bands were loaded using imread. 

2. Data Conversion: Pixel values (originally in 16-bit integer format) were converted 

to double precision and normalized to the range [0, 1] by dividing by 65535. 

3. Band Assignment: Separate variables were created for each spectral band and 

season/year combination to maintain a structured processing workflow. 

4. Validation: Band dimensions and alignment were confirmed to ensure spatial 

consistency across images. 
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5.4. Vegetation Indices Computation 

        Six vegetation indices were computed as outlined in Equations (1) through (6) in 

the earlier section of the manuscript. These include: 

1. NDVI (Eq. 1) 

2. NDWI (Eq. 2) 

3. SAVI (Eq. 3), using L = 0.5 

4. GCI (Eq. 5) 

5. EVI (Eq. 4), with constants: G = 2.5, C1 = 6, C2 = 7.5, and L = 1 

6. LAI (Eq. 6), calculated from NDVI values 

        LAIMAX had been set to 6, which was found to be common canopy density threshold 

of irrigated agricultural vegetation. 

         The most important thing was dynamic extraction of the minimum and maximum                     

NDVI values that were used to compute LAI in the total NDVI data set of all the seasons 

and years. 

         To improve performance and achieve precision, all index calculations were done 

with the MATLAB matrix operations. 

 

5.5. Visualization of Vegetation Indices 

     Spatial patterns of the computed vegetation indices were visualized using MATLAB 

plotting functions: 

1. The imagesc function was used to render index maps for each season and year. 

2. Comparative subplots (subplot) were used to display side-by-side maps (e.g., 

NDVI in winter 2016 vs. 2019). 

3. Colorbars were added to all plots to indicate scale and assist in interpretation. 

4. Consistent value ranges (e.g., −1 to +1 for NDVI and NDWI) were applied 

across plots for standardization. 

5. This visualization facilitated intuitive interpretation of interannual and 

seasonal differences in vegetation condition and distribution. 
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5.6. Statistical Analysis 

         Each vegetation index is NDVI, NDWI, SAVI, GCI, EVI, and LAI which was 

subjected to descriptive statistical analysis in order to analyze the temporal differences in 

vegetation conditions during winter seasons in 2016 and 2019. Mean, median, and the 

standard deviation of each index with regard to all pixel values in the study area were 

carried out to have idea on the central tendency, distribution symmetry, and spatial 

variability of the vegetation health. These figures were calculated by year type in 

MATLAB based on the built in statistical functions. Besides numeric summaries, box-

and-whisker plots were created to also visualize the index values distribution, differences 

in spreads, median shifts, and any possible outliers in the two years. These plots had the 

winter season indices compared side-by-side, providing a visual demonstration of how 

the vegetation changes through time. This statistical setup allowed making a strong 

comparison between interannual vegetation succession as well as helped to outline tends 

in environmental stress, resilience, and recovery in the semi-arid agricultural system of 

Abu Ghraib. 

 

5.7. Workflow Overview 

          All the methods are outlined in the analytical workflow diagram (Figure 3). The workflow 

shows the diagram of the workflow of the MATLAB-based study. It begins with the pillage of 

Landsat 8 images and ends with normalization and the calculation of the vegetation index and the 

display. The last part includes statistical analysis and comparison of seasonal and interannual 

trends in vegetation on the basis of descriptive measures and boxplot graphical presentations. 
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Figure 3: Multispectral Analysis Workflow. 

6. Results and Discussion 

6.1. Landsat 8 images remote sensing analysing 

        This is a decrease by 2019 by comparison with 2016. Precisely, NDVI average in 

winter of 2016 was 0.1994, but in winter of 2019 it grew to 0.2950, representing an 

impressive rise in the healthiness and density of the vegetation. This is confirmed visually 

by Figure 4 where NDVI in winter 2019 can be seen as much more evenly dispensed 

across the study area, which has already been a subject of degradation in the past or, 

instead, the area of irrigated crops is growing. The distribution of NDVI in 2016, in turn, 

gives the picture of even patchy and low-density vegetation, which correlates with lower 

rainfall and less effective irrigation methods in 2016. 
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Figure 4: NDVI for Landsat 8 images (winter of 2016 and 2019). 

         The difference is even higher in the summer season (Figure (5)). The overall NDVI 

(June-August 2016) was very low at 0.1132 indicating general drought stress that is 

characteristic of the country in hot and dry summer. In comparison, NDVI average in 

summer 2019 was much higher (0.1894), which implies that the irrigation in the dry 

season was more serious or better controlled. This growth can also represent a change of 

the land use structure, including a successful production of summer crops that were either 

absent or failed to work in the year 2016.. 

 

Figure 5: NDVI for Landsat 8 images (summer of 2016 and 2019). 

 

           The NDWI in these figures 6 and 7 is also confirming itself with NDVI, with 2019 

clearly containing more water in the green land. During winter 2019 (Figure 6), the NDWI 

presents the high values in the areas of the irrigation projects, which indicates good soil 

moisture conditions. Probably, this is because more rain actually fell that season, 15-20 

per cent over the average as climatic record of the region testifies, because of improved 

field drainage or less runoff. In 2016 the majority of the same region has values of NDWI 

that are low or even negative, meaning dry and stressed vegetation conditions. 
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Figure (6): NDWI for Landsat 8 images (winter of 2016 and 2019). 

 

Figure 7: NDWI for Landsat 8 images (summer of 2016 and 2019). 

 

          During summer (Figure 7), the betterment of NDWI in 2019 indicates that irrigation 

had been stretched out or they were more effective. This can be attributable to such policy 

changes as water reuse and the use of treated wastewater, which Iraq started developing 

in 201718, particularly in the agricultural areas surrounding cities, including the peri-

urban locality of Abu Ghraib. 

         Conclusions of the Leaf Area Index (LAI) tend to support the story of vegetation 

recovery. As illustrated in figure 8 and 9, the LAI values are increased during the winter 

and summer of 2019. This canon vertically to denser vegetative canopy in winter (Figure 

8), presumably the successful winter crop of wheat and barley. During the 2016 season 

recorded low LAI values indicate low development in the vegetative growth that could 

be associated with bad rainfall as well as planting delayed or interrupted. 
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Figure 8: Leaf Area Index (LAI) Trends (winter of 2016 and 2019). 

 

Figure 9: Leaf Area Index (LAI) Trends (summer of 2016 and 2019). 

           During summer 2019 (Figure 9) LAI values are still high, which is atypical of this 

climate, and it confirms that the irrigation systems were more well-managed, and the 

vegetation was able to sustain extreme conditions in summer. Such gains can equally be 

pertinent to a shift to drought resistant crops, e.g. sunflower or certain fodder crops. 

           The reason is that SAVI results, presented in Figures 10 and 11 exhibit trends 

similar to NDVI, however taking into consideration brightness of soil, which is essential 

factor in semi-arid areas and solar surfaces. SAVI values are more and spatially consistent 

in winter and summer of 2019. What it means is that not only was the vegetative cover 

more prevalent but also served better to shade the soil causing lower albedo and 

evaporation. 
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Figure 10: SAVI Trends for winter 2016 and 2019. 

 

Figure 11: SAVI Trends for summer 2016 and 2019. 

             Chlorophyll activity as shown by the GCI results (Figures 12 and 13) is in close 

relationship with nitrogen uptake. The rise in GCI in 2019 means not only that the 

vegetation was denser, but also that it was more photosynthetically active and potentially 

due to better fertilization or earth condition. These collectively indicate have a tendency 

to indicate an all-round enhancement in agricultural health- soil, water, and crop status as 

opposed to greenness only.. 

 

Figure 12: Changed over time in GCI for winter of two different years: 2016 and 2019. 
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Figure 13: Changed over time in GCI for summer of two different years: 2016 and 

2019. 

          More details are provided by Enhanced Vegetation Index (EVI). Compared with 

NDVI, EVI is more sensitive in locations of dense biomass and it can eliminate soil 

background noise. Figure 14 and Figure 15 highlight the high EVI value in 2019 

especially in the summer season, which supports the claim that vegetation was more 

resilient, structurally strong and active in high stress time.. 

 

Figure 14: EVI Trends for winter (2016 and 2019). 

 

Figure 15: EVI Trends for summer (2016 and 2019). 

         The higher summer EVI in 2019 indicates not just that these crops managed to 

withstand hot conditions but that their structural properties and levels of chlorophyll had 
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also been retained at high levels, which is an act of good agronomic performance, either 

due to modified cropping cycles or more efficient irrigation schedules. 

6.2. NDVI overlapping analysis 

In this analysis, (AI) technology is employed to perform (NDVI) analysis on 

satellite imagery from the summer and winter seasons of 2016 and 2019. AI algorithms 

are utilized to process the vast amounts of image data and calculate NDVI values, which 

are indicative of vegetation health. The AI system identifies significant NDVI values and 

determines the overlap between the summer and winter seasons of each year. The results 

are expected to reveal a positive correlation between the overlap percentage and water 

quantities, with AI algorithms discerning patterns that suggest higher overlap corresponds 

to greater water abundance. The comparison of NDVI overlap between 2016 and 2019 is 

presented through visual representations in Figure (16), with each image depicting the 

overlap for the respective years. Furthermore, statistical data is analyzed, revealing a 

notable disparity in overlap percentages: 2016 recorded a value of 0.38%, while 2019 

exhibited a significantly higher value of 8.19%. This discrepancy indicates that the 

vegetation in 2019, as detected through AI-driven NDVI analysis, experienced a more 

pronounced response to water availability compared to 2016. Statistical comparisons 

between the two years (2016 and 2019) are conducted to further elucidate the findings. 

Figure 16: Overlapping analysis using AI for 2016 and 2019. 

6.3. Statistical Analysis and Distributional Patterns 

            The statistical results shown in Figures 17 and 18 and Tables 1 and 2 confirm the 

observed trends. All indices showed increases in mean and median values from 2016 to 

2019, and the standard deviation also rose, reflecting more spatial variability—potentially 

due to  
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Table 1: Statistical comparison between winter 2016 and 2019. 

Index Mean_2016 Mean_2019 Std_2016 Std_2019 Correlation 

NDVI 0.1994 0.2950 0.0796 0.1000 0.3658 

NDWI -0.2229 -0.2831 0.0606 0.0730 0.3486 

SAVI 0.1430 0.1993 0.0571 0.0687 0.3513 

GCI 0.2229 0.2831 0.0606 0.0730 0.3486 

EVI 0.1786 0.3057 0.0770 0.1140 0.3454 

LAI 2.9881 3.7875 0.6656 0.8365 0.3658 

Table 2: Statistical comparison between summer 2016 and 2019. 

Index Mean_2016 Mean_2019 Std_2016 Std_2019 Correlation 

NDVI 0.1132 0.1894 0.0486 0.0825 0.4351 

NDWI -0.1631 -0.2248 0.0379 0.0605 0.4007 

SAVI 0.0837 0.1419 0.0350 0.0602 0.4179 

GCI 0.1631 0.2248 0.0379 0.0605 0.4007 

EVI 0.1062 0.2086 0.0468 0.1001 0.4136 

LAI 2.2670 2.9049 0.4064 0.6898 0.4351 

 

 

Figure 17: Statistical results comparison between winter (2016 and 2019). 
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Figure 18: Statistical results comparison between summer (2016 and 2019). 

         Figure 19 Boxplot analysis further illustrates the shift of distribution of index values 

upwards in 2019 which shows that no single region was found to have improved rather 

improvement was distributed uniformly. This high level statistical support really gives 

credence to the visual reading of the maps and re-affirms that the alterations are not 

artifacts of anomaly or noise but are indeed real time surface transformations of the land. 

 

Figure 19: Box plot analysis. 
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         This broad-scale statistical support adds confidence to the visual interpretation of 

the maps and emphasizes that the changes are not due to anomalies or noise but represent 

actual land surface transformations. 

7. Conclusions 

1. The study confirmed the effectiveness of using remote sensing-based vegetation 

indices (NDVI, NDWI, EVI, SAVI, GCI, LAI) to monitor temporal and spatial 

changes in vegetation health and soil conditions in the semi-arid environment of 

Abu Ghraib. 

2. A significant improvement in vegetation cover was observed between 2016 and 

2019, particularly during both winter and summer seasons, reflecting the positive 

impact of increased rainfall and enhanced irrigation management. 

3. The multi-index approach provided a comprehensive assessment of vegetation 

dynamics, allowing detection of water stress, irrigation failures, and land 

degradation beyond just greenness analysis. 

4. The spatial insights derived from the indices can support decision-making for 

local irrigation planners and policymakers by identifying priority areas for 

intervention—such as regions with declining LAI or low NDWI values. 

5. The methodology offers a scalable and replicable framework for agricultural 

water management and climate adaptation in similar semi-arid regions. 

6. Integration of vegetation indices with rainfall and land-use data proved useful in 

understanding interannual and seasonal variability, providing early warning 

signals for environmental stress. 

7. At the policy level, these findings can be used to design more responsive irrigation 

schedules, guide land-use reforms, and evaluate the impact of climate variability 

on agricultural productivity. 

         To enhance the accuracy and representativeness of the findings, it is recommended 

to expand the temporal scope of the study by including additional years that represent 

distinct climatic conditions: 

1. A dry year (with significantly below-average rainfall). 

2. A moderate year (with average climatic conditions). 

3. A wet year (with above-average rainfall). 
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4. This would allow the study to comprehensively evaluate vegetation responses 

under extreme and natural conditions, thereby improving the reliability of the 

results and supporting more resilient agricultural and water management 

strategies. 
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