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Abstract  

This study aims to provide a comprehensive review of Machine learning (ML) and deep 

learning (DL) applications to predict surface water quantity and quality. Analysis of 

numerous research papers reveals that deep learning models, specifically those designed for 

handling time series data like Long Short-Term Memory (LSTM) and those processing 

image-like data like Convolutional Neural Networks (CNN), often achieve greater accuracy 

than traditional ML methods. Hybrid and ensemble machine and deep learning models 

generally exhibited the best performance for surface water quantity prediction, as 

demonstrated by models like One Dimensional Convolutional Neural Networks (1D-CNN), 

Water Balance Model-Support Vector Regression (WBM-SVR), Boruta Feature Selection 

Algorithm- Long-Short Term Memory (BRF-LSTM), Nonlinear Auto Regressive Exogenous 

Multi-Layer Perceptron- Random Forest (NARX-MLP-RF), Sparrow Search Algorithm - 

Artificial Neural Networks (SSA-ANN), and Support Vector Regression- Grey Wolf 

Optimization (SVR-GWO). A variety of models were applied for water quality prediction, 

with hybrid models combining aspects of different approaches Convolutional-LSTM (Conv-

LSTM), and Random Tree- bagging (RT-BA) leveraging multiple algorithms' strengths. 

Deep learning models including LSTM, and CNN, commonly demonstrated strong predictive 

skills based on metrics like R2, NSE, and RMSE. In contrast, simpler machine learning 

models like Support Vector Regression (SVR), Gaussian Process Regression (GPR), 

Enhanced Extreme Learning Machine (EELM), and Artificial Neural Networks (ANNs) often 

showed moderate to low predictive ability. Future research should focus on developing 

models that can effectively address data limitations, incorporate climate change impacts, and 

are evaluated using more comprehensive metrics that capture factors beyond accuracy, such 

as uncertainty quantification and model interpretability. 

Keywords: Surface water, water quality, water quantity, hydrological modeling, machine 

learning, deep learning, climate change. 
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تقييم استخدام تطبيقات التعلم الآلي والتعلم العميق في التنبؤ بكمية ونوعية المياه  

 السطحية: مراجعة

 ضياء حمدان داغر 

 وزارة الموارد المائية، بغداد، العراق 

dheyaa197645@gmail.com المؤلف المرسل:   ايميل  

 الخلاصة

.  السطحية  المياه  ونوعية  بكمية  للتنبؤ   العميق  والتعلم  الآلي  التعلم  لتطبيقات  شاملة  مراجعة  تقديم  إلى  الدراسة  هذه  تهدف

 الزمنية  السلاسل  بيانات  مع  للتعامل  المصممة تلك  وخاصة،  العميق التعلم  نماذج  أن  البحثية الأوراق  من  العديد  تحليل  يكشف

،    الالتفافية  العصبية  الشبكات  مثل  للصور  المشابهة  البيانات  تعالج  التي  وتلك   المدى  قصيرة  الطويلة  الذاكرة  نماذج  مثل

 العميق  والتعلم  الآلي  للتعلم  والتجميعية  الهجينة  النماذج  أظهرت.  التقليدية  الآلي  التعلم  بطرق  مقارنة  أعلى  دقة  تحقق  ما  غالبًا

،   البعد  أحادية  الالتفافية  العصبية   الشبكات  مثل  نماذج  في  يتضح  كما،  السطحية  المياه  بكمية  التنبؤ  في  أداء  أفضل  عمومًا

 والشبكة،     المدى  قصيرة  الطويلة  الذاكرة  -  بوروتا  الميزات  اختيار  وخوارزمية،    الداعم  الانحدار  -  المياه  توازن  ونموذج

،     الاصطناعية  العصبية  الشبكات  -  بحث  وخوارزمية،     الخطية  غير  المرتجعة  التغذية  ذات  الطبقات  متعددة  العصبية

 تم  حيث،  المياه  بجودة   للتنبؤ  النماذج  من  متنوعة  مجموعة  تطبيق  تم.  الرمادي  الذئب  تحسين  خوارزمية  -  الداعم  والانحدار

 -  العشوائية  الشجرية  والطريقة  الالتفافي  النموذج  مثل،  النهج   من  مختلفة  جوانب  بين  تجمع  التي   الهجينة  النماذج  استخدام

 قدرات   العادة  في،  CNNو  LSTM  ذلك  في  بما،  العميق  التعلم  نماذج  أثبتت.  خوارزميات  عدة  قوة  من  للاستفادة  التجميعية

  مثل   الأبسط  الآلي  التعلم  نماذج   أظهرت،  ذلك  من  النقيض  على  RMSEو  NSE  و  R²  مثل  مقاييس  على  بناءً   قوية  تنبؤية

 قدرة  الاصطناعية  العصبية  والشبكات  المحسنة  القصوى  التعلم  وآلة  الغاوسية  العمليات  باستخدام  والانحدار   الداعم  الانحدار

،  البيانات  قيود  مع   بفعالية  التعامل  يمكنها   نماذج  تطوير  على  المستقبلية  الأبحاث   تركز  أن  ينبغي.  منخفضة  إلى  معتدلة  تنبؤية

 عدم   تقدير  مثل،  الدقة  تتجاوز  عوامل  الاعتبار  في  تأخذ  شمولية  أكثر  مقاييس  باستخدام  وتقييمها،  المناخ  تغير  تأثيرات   ودمج

 . النموذج تفسير وإمكانية اليقين

المفتاحية:   تغير  الكلمات  العميق،  التعلم  الآلي،  التعلم  الهيدرولوجية،  النمذجة  المياه،  كمية  المياه،  جودة  السطحية،  المياه 

 .المناخ
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1. Introduction 

   Water plays a role, in sustaining ecosystems, human communities, and economic progress. 

However, managing surface water bodies has become more challenging due to factors like 

climate change, urbanization, and pollution (Cassardo & Jones 2011); (Daniel et al., 2012); 

(Rajamani et al., 2014). These factors make it difficult to predict the quantity and quality of 

water in these sources accurately. The increasing water demand coupled with its declining 

availability emphasizes the need for strategies in managing this resource. 

The field of machine learning (ML) and deep learning (DL) algorithms is revolutionizing our 

ability to model, predict, and manage water resources (Hannes et al., 2021); (Muhammed et 

al., 2020). These data-driven approaches are transforming the water industry by utilizing the 

growing volume, variety, and velocity of water-related data (Wei et al. 2020); (Fi et al., 

2020). Traditional physics-based models used by hydrologists and water resource managers 

face challenges, in dealing with the complexity and variability of systems (Muhammed et al., 

2020). 

   Accurate prediction of the quantity and quality of surface and groundwater plays a role, in 

managing water resources (Mostafa, et. Al., 2021) (Sandra, et. Al., 2021) (Atefeh, et. Al., 

2021). Machine learning (ML) and deep learning (DL) models have emerged as promising 

approaches for predicting water resources because they can effectively consider relationships 

and complex interactions, between variables (Behzad, et. Al., 2021). 

This study provides a comprehensive exploration of machine learning (ML) and deep 

learning (DL) applications for predicting surface water quantity and quality. It reviews 

existing literature and discusses the state of research and practical implementations in this 

interdisciplinary field. The strengths and limitations of ML and DL techniques are critically 

evaluated, and statistical measures such as Nash-Sutcliffe Efficiency (NSE), coefficient of 

determination (R2), Nash-Sutcliffe Efficiency (NSE), Root Mean Square Error (RMSE), 

Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and Correlation 

Coefficient (CC) and are employed to quantify performance. 
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2. Methods and Data  
2.1 Overview of Study Area 

   Figure 1 shows the geographical regions covered in the reviewed papers. The most studied 

region is Asia, representing 69% of the papers. Europe comprises 21% of the papers, United 

States of America accounts for 9% of the literature, making it the third most examined region. 

The predominance of research in Asia, Europe, and the United States of America, indicates 

high attention has been given to understanding the predictions of future water quantity and 

quality.  

 

Figure (1): Geographical regions covered by reviewed papers 
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2.2 Methods 

   Machine learning and deep learning models offer powerful capabilities for understanding 

complex predicting water resources. This analysis summarizes the prevalence of different 

machine learning and deep learning algorithms employed across 48 recent studies focused on 

the assessment of using ML and DL models. Quantifying the distribution and diversity of 

models used helps identify research trends and potential areas needing further exploration. 

The following paragraph analyzes the types of models applied and their frequency of use 

across the surveyed literature.  

Out of the 48 papers, the most used machine learning model was artificial neural networks 

(ANNs). The second most popular model was supporting vector regression (SVR). Long 

short-term memory networks (LSTMs) were the third most prevalent model. 

Other notable machine learning methods included random forest (RF), Bayesian models, 

supporting vector machine (SVM), and convolutional neural networks (CNNs). More 

specialized techniques like copula-based Bayesian model averaging, firefly algorithm, 

Gaussian process regression (GBR), Feed Forward Neural Network (FFNN), K-Nearest 

Neighbour, Back propagation artificial neural network (BP-ANN), Gaussian linear regression 

model (GLM), Autoregressive integrated moving average (ARIMA), were each only used in 

1-2 paper. In terms of deep learning, the predominant techniques were LSTMs, CNNs, and 

deep neural networks (DNNs).  

Overall, the analysis shows a diversity of machine learning and deep learning approaches 

applied in the literature, with a lean towards established methods like ANNs and SVR but an 

emerging preference for innovative deep learning models. There is potential to enhance 

model accuracy by using hybrid methods that combine multiple algorithms. Table 1 shows 

the Machine Learning and Deep Learning Models that are used in the 48 reviewed papers. 
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Table (1): Machine Learning and Deep Learning Models used in reviewed papers. 

References 

Machine and Deep Learning 

Models 

Classification of 

Water Quantity and 

Quality 

Schuetz, et al., (2019), Kim, et al., 

(2021), Rabezanahary, (2021), 

Rice, et al., (2020), Shah, et al., 

(2021), Apaydin, et al., (2021), 

Mukonza & Chiang (2022)  

Artificial Neural Networks 

(ANNs) 

Water Quantity 

Liu, et al., (2019), Thai-Nghe, et 

al., (2020), Lee, et al., (2020), 

Kim, et al., (2021), Qiu, et al., 

(2021), Althoff, et al., (2021), 

Apaydin, et al., (2021), Kimura, et 

al., (2021), Mukonza and Chiang 

(2022), Quyen et al. (2023), 

Ahmed, et al., (2021), Barzegar, et 

al., (2020) 

Long-Short Term Memory 

(LSTM)  

Water Quantity and 

Quality 

Zhu, et al., (2019), Asadollah, et 

al., (2021), Mukonza & Chiang 

(2022) 

Support Vector Regression 

(SVR) 

Water Quantity and 

Quality 

Xu, et al., (2022), Quyen, et al., 

(2023), Khoi, et al., (2022), 

Barzegar, et al., (2020), Zareian & 

Salem (2022) 

Convolutional Neural 

Networks (CNNs)  

Water Quantity 

Zhu, et al., (2019), Rice, et al., 

(2020) 

Supporting Vector Machine 

(SVM) 

Water Quantity 

Qiu, et al., (2021), Khoi, et al., 

(2022) Random Forest (RF) 

Water Quantity 

Yaseen, et al., (2019) 
Enhanced Extreme Learning 

Machine (EELM) 

Water Quantity and 

Quality 

Moghadam, et al., (2021) Deep Recurrent Neural Water Quality 
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References 

Machine and Deep Learning 

Models 

Classification of 

Water Quantity and 

Quality 

Network (DRNN) 

Farzana, et al., (2023) 

Extreme Gradient Boosting 

(XGBoost) and Gated 

Recurrent Units (GRU) 

Water Quality 

Baek, et al., (2020) 

Convolutional Neural 

Networks (CNNs) - Long-

Short Term Memory (LSTM)  

Water Quantity and 

Quality 

Mukonza & Chiang (2022), 

Mukonza & Chiang (2022), Kalu, 

et al., (2023), Uddin, et al., (2021) 

 Gaussian Process Regression 

(GPR) 

Water Quality 

Yazid, et al., (2020) 

Grey Wolf Optimization 

(GWO) 

Water Quantity 

Zhu, et al., (2020), Khoi, et al., 

(2022) 

Feed Forward Neural 

Network (FFNN) 

Water Quantity and 

Quality 

Qiu, et al., (2021) 

Backpropagation Artificial 

neural network (BP-ANN) 

Water Quantity 

Di Nunno, et al., (2023) 

Nonlinear Auto Regressive 

network with exogenous 

input (NARX), Multi-Layer 

Perceptron (MLP)- Random 

Forest (RF) 

Water Quantity 

Singh, et al., (2023) 

Gaussian linear regression 

model (GLM) 

Water Quantity 

Das & Nanduri (2018) 

Relevance Vector Machine 

(RVM) 

Water Quantity 

Zhu, et al., (2019) 

Extreme Learning Machine 

(ELM) 

Water Quantity 

Rice, et al., (2020) 

Extreme Gradient Boosting 

(XGBoost), and Linear Ridge 

Water Quantity 
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References 

Machine and Deep Learning 

Models 

Classification of 

Water Quantity and 

Quality 

Regression (LRR) 

Singh et al. (2023) 

Gaussian generalized additive 

model (GAM) 

Water Quantity 

Jafar, et al., (2023) 

Multi-layers Regression 

(MLR) 

Water Quantity and 

Quality 

Xu, et al., (2022) Gated Recurrent Units (GRU) Water Quality 

Matrenin, et al., (2022), Panahi, et 

al., (2021), Khoi, et al., (2022) 

Multi-Layer Perceptron 

(MLP) 

Water Quantity 

Matrenin, et al., (2022) 

Adaptive Boosting over 

Decision Trees (AbaBoost) 

Water Quantity 

Mukonza & Chiang (2022) 

Landsat 8- Convolutional-

LSTM (L8 ConvLSTM) 

Water Quality 

Shah, et al., (2021) 

Gene expression 

programming (GEP) 

Water Quality 

Khoi, et al., (2022) 

Adaptive Boosting 

(AdaBoost), Gradient 

Boosting (GBM), Histogram-

Based Gradient Boosting 

(HGBM), Light Gradient 

Boosting (LightGBM), and 

Extreme Gradient Boosting 

(XGBoost) 

Water Quantity and 

Quality 

Khoi, et al., (2022), Asadollah, et 

al., (2021) 

Decision Tree Regression 

(DTR), and Extra Trees 

Regression (ETR) 

Water Quality 

Khoi, et al., (2022) Radial Basis Function (RBF)  

Water Quantity and 

Quality 

Karamoutsou & Psilovikos (2021) 

Feed-Forward Deep Neural 

Networks (FF-DNNs) 

Water Quantity and 

Quality 
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References 

Machine and Deep Learning 

Models 

Classification of 

Water Quantity and 

Quality 

Read, et al., (2022) 

Process‐Guided Deep 

Learning (PGDL) 

Water Quality 

Hou, et al., (2022) 

Water Balance Model-

Support Vector Regression 

(WBM-SVR) 

Water Quantity 

He, et al., (2022) 

(Variational Mode 

Decomposition - Chaos 

Sparrow Search Algorithm- 

Long Short-Term Memory - 

Chaos Sparrow Search 

Algorithm, and multiple 

linear regression) VMD- 

CSSA -LSTM-MLR  

Water Quality 

Kim, et al., (2021) 

Process-based Hydrologic 

Models (PHMs) and Data-

driven Machine Learning 

Models (DMLs) 

Water Quantity 

Ahmed, et al., (2021) 

Boruta Feature Selection 

Algorithm- Long-Short Term 

Memory (LSTM) (BRF-

LSTM) 

Water Quality 

Rasouli, et al., (2012) Gaussian process (GP) Water Quantity 

Reddy, et al., (2021) 

Emotional Artificial Neural 

Network (EANN) 

Water Quantity 

Adnan, et al., (2021) 

ANFIS- Particle Swarm 

Optimization (PSO), ANFIS, 

MARS, M5Tree, and Multi-

Model Simple Averaging 

(MM-SA) 

Water Quantity 



 
Journal of Water Resources and Geosciences 
Vol. 3, No. 2, 2024 
 

27 
 

References 

Machine and Deep Learning 

Models 

Classification of 

Water Quantity and 

Quality 

Riahi, et al., (2021) 

Fire-Fly Algorithm (FFA), 

Genetic Algorithm (GA), 

Grey Wolf Optimization 

(GWO), Particle Swarm 

Optimization (PSO), and 

Differential Evolution (DE) 

Water Quantity 

Panahi, et al., (2021) 

Copula-Based -Bayesian 

Model Averaging (CBMA), 

and Bayesian Model 

Averaging (BMA) 

Water Quantity 

Bui, et al., (2020) 

Random Forest, M5P, 

Random Tree, Reduced Error 

Pruning Tree 

Water Quality 

Aldrees, et al., (2022) 

Non-Linear Regression 

Models (NLRMs) 

Water Quality 

 

2.3 Classification of Reviewed Papers 

   The classification of reviewed papers according to the surface water quantity and quality. 

An analysis of 48 papers on climate change’s impacts on water resources reveals a 

predominant focus on surface water quantity and quality. The literature breakdown shows that 

57 % of studies addressed surface water quantity predictions, and 43 % examined surface 

water quality. A more balanced distribution investigating surface water quantity, and quality 

impacts will provide a fuller understanding. The classifications reveal key priorities like 

surface water quality that should become a greater focus of future work to produce holistic 

insights needed for water management. Figure 2 shows the flow chart of the overall process 

of conducting the review. 
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Figure (2): Flow chart of overall process of conducting the review. 

2.4 Types of Data 

   Figure 3 shows the types of data that were used in the 48 reviewed papers. An analysis of 

the various data types utilized across the reviewed papers reveals that water quality data 

(38%), and streamflow data (33%), were the most predominant data sources leveraged, 

collectively representing over half of the data types mentioned. Other major data types 

leveraged included runoff data (16%). Additional data types referenced included climate data, 

evaporation data, evapotranspiration data, and water storage, each constituting 1-4% of the 

data types enumerated. The heavy reliance on streamflow data across the hydrological studies 

reflects the criticality of these data sources for effectively modeling and assessing essential 

processes like surface water connectivity, streamflow forecasting, and related applications. 
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Figure (3): Types of data used in reviewed papers. 

3. Results and Discussions 

3.1 Perfor ance Metrics 

   Machine learning and deep learning models have been used to predict surface water. 

Various performance metrics have been employed to assess the accuracy of these predictions. 

For surface water predictions, statistical parameters such as Correlation Coefficient (CC), and 

Mean Square Error (MSE), have been used to evaluate the performance of models like 

random forest (RF), gradient boosting (GB), and Long Short-Term Memory (LSTM) (Vijaya 

et, al., 2021). In the estimation of surface water temperature, performance metrics like R2, 

RMSE, and BIAS have been used to compare the performance of machine learning and deep 

learning models such as Support Vector Regression (SVR), Gaussian Process Regression 

(GPR), Artificial Neural Network (ANN), Long Short-Term Memory (LSTM), and 

Convolutional Long Short-Term Memory (ConvLSTM) (Sabastian, et. al., 2022). The 

evaluation measures emphasize the capability of these models to accurately estimate surface 

water temperature (Ankit, et. al., 2022). Across the evaluated literature, the Nash Sutcliffe 

efficiency (NSE) emerges as a dominant performance metric, appearing in 46% of the papers, 

reflecting its widespread use to gauge predictive accuracy. Meanwhile, RMSE finds 

relevance in 25% of the analyses, serving as an alternate accuracy measure often considered 

alongside other metrics Mean Absolute Error (MAE) is a significant evaluation criterion in 

25% of the studies, underscoring its role in assessing model performance. R2 (Coefficient of 
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Determination) features in 26% of the studies, and Coefficient of Correlation (CC) at 19% 

highlighting its role in quantifying explained variability. Kling-Gupta Efficiency (KGE) is 

employed in 16% of the analyses, evaluating relationships and hydrological performance. 

Percent Bias (PBIAS) and Relative Root Mean Square Error (RRMSE), appear in 6 and 3% 

of the literature, respectively. Relative Mean Absolute Error (RMAE), Mean Relative Error 

(MRE), and Mean Absolute Percentage Error (MAPE) each appear at 3%, indicating their 

specialized roles in specific scenarios. This collective insight underscores the diverse array of 

performance metrics employed, each offering distinct perspectives on the accuracy and 

robustness of machine learning models in capturing intricate climate-water relationships. 

Figure 4 shows the distribution of the statistical performance parameters of reviewed papers. 

 

Figure (4): Distribution of statistical performance parameters of reviewed papers 

3.1.1 Performance Metrics of Surface Water Predictions 

   Hydrological modelling has witnessed the application of diverse machine learning and deep 

learning techniques, each subjected to comprehensive evaluations using various performance 

metrics. The significance of the RMSE as a robust evaluation metric has been acknowledged. 

(Schuetz, et al., 2019). The predictive prowess of well-established machine learning models 

(LSSVM, M5 Model Tree, and MARS) was evaluated using quantitative and graphical 

metrics. The Taylor diagram, a two-dimensional analysis tool, was utilized to compare model 

performance based on correlation coefficient, standard deviation, and RMSE. Among the 

models, LSSVM exhibited the highest accuracy in terms of standard deviation and correlation 

(Kisi, et al., 2019). Highlighting the importance of diverse evaluation metrics, several studies 

have examined various aspects of model performance across different hydrological 
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applications. In the context of downscaling the gridded General Circulation Model (GCM), 

runoff exhibited remarkable capabilities by capturing observed runoff variability. The DNN 

performed better than the models LRR, SVM, XGBoost, and ANN in the simulating runoff 

(Rice, et al., 2020). A comparison between Process-based Hydrologic Models (PHMs) and 

data-driven Machine Learning Models (DMLs), particularly ANNs, demonstrated the 

potential of both approaches in rainfall-runoff simulations, particularly when rainfall is 

predominant. Various metrics including RMSE, CC, KGE, and NSE were employed for 

accuracy and predictive ability assessment, highlighting the value of both PHMs and DMLs. 

ANNs showed promise in enhancing accuracy in rainfall-runoff simulations (Kim, et al., 

2021). The SVR model exhibited superior performance over ELM and downscaled input 

models, as indicated by metrics including RMSE, MAE, CC, and NSE. The metrics 

underscored the SVR model's robustness in capturing climate-hydrology relationships and 

predicting streamflow, with results aligning well with observations (Zhu, et al., 2019). The 

LSTM model demonstrated favorable performance based on median KGE, and NSE values, 

closely approaching the benchmark model. The incorporation of dynamic land cover 

attributes improved low-flow predictions. While the benchmark model maintained an overall 

advantage, the regional LSTM model provided a robust data-driven alternative without 

requiring calibration (Althoff, et al., 2021). Additionally, Panahi, et al., (2021) showed the 

ensemble CBMA and BMA models outperformed the individual MLP models for streamflow 

prediction. The ensemble CBMA model showed the best performance with the highest NSE 

and greatest reductions in RMSE and MAE compared to the individual MLP models.  

Furthermore, analyses of model reproducibility indicated greater stability and consistency in 

runoff simulation results for the LSTM model compared to the Soil and Water Assessment 

Tool SWAT model (Lee, et al., 2020).  RVM with the Laplacian RBF kernel showed higher 

correlation, efficiency, and lower error compared to SVM across both the training and testing 

sets. This indicates it was better able to model the relationship between the predictors and 

observed streamflow data. The key metrics highlight the superior performance of RVM for 

this hydrologic modeling application (Das and Nanduri, 2018). The non-linear model's RF, 

1D-CNN, and ANN performed better than the linear model's GAM, GLM, and MARS in 

simulating streamflow. RF slightly outperformed 1D-CNN based on error metrics like MAE 

and PBIAS. All models showed superior performance based on R2, NSE, and KGE values, 

with RF having the best values. GLM performed the worst among all models based on most 

metrics. All models slightly underperformed in predicting peak streamflow values. RF was 
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selected as the best model for predicting future streamflow projections (Singh, et al., 2023). 

Moreover, metrics like KGE and MRE demonstrated the hybrid CNN-GRU model in 

enhancing monthly streamflow predictions (Xu, et al., 2022). Figure 5 shows the performance 

metric for LSSVM, DNN, ANNs, SVR, LSTM, CBMA, RVM, RF, 1D-CNN, and CNN-

GRU models. 

 

Figure (5): Performance metrics for LSSVM, DNN, ANNs, SVR, LSTM, CBMA, RVM, RF, 

1D-CNN, and CNN-GRU models. 

   The evaluation examined a hybrid machine learning and deep learning approach in short-

term streamflow forecasting, demonstrating its superiority over simpler models. The hybrid 

NARX - MLP- RF model displayed strong predictive capabilities across rivers and forecast 

horizons (Di Nunno, et al., 2023). Reconstructing monthly lake water levels highlighted the 

WBM-SVR model's superior accuracy over SVR models, as indicated by CC and NSE values 

(Hou et al. 2022). Additional metrics like NSE and PBIAS could provide further insight into 

model performance. The results demonstrate the potential of deep learning methods like 

CNNs for hydrological modeling and stream flow prediction (Zareian & Salem 2022). In the 

context of medium-term water inflow forecasting, machine learning methods such as MLP, 

Adaptive Boosting over Decision Trees (AbaBoost), and RF highlighted their suitability and 

achieved satisfactory results. The MLP model achieved lower NRMSE when trained with a 

self-adaptation method that retrains them on new data daily (Matrenin, et al., 2022). The SSA 

decomposition technique consistently improved the deep learning (LSTM, CNN) and ANN 

models, demonstrating it is an effective pre-processing approach for this application. the SSA 

decomposition hybrid models, especially SSA-ANN, achieved the best predictive 
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performance for monthly streamflow forecasting in comparison with SSA-CNN and SSA-

LSTM (Apaydin, et al., 2021). The evaluation compared the ANN model and the SWAT in 

predicting the hydrological impacts of climate change on streamflow. ANN's performance 

was assessed through the R2, which indicated satisfactory performance for both precipitation 

and temperature predictions. Similarly, SWAT demonstrated superior performance based on 

statistical indices (Rabezanahary, et al., 2021).  Reddy, et al., (2021) compared three machine 

learning models FFNN, MARS, and EANN for monthly streamflow prediction. The EANN 

model achieved superior performance compared to FFNN and MARS in predicting monthly 

streamflow. The EANN had the best performance overall based on NSE, R2, and RMSE 

metrics for both training and testing. Kalu et al. (2023) developed a novel machine learning 

routine based on the GPR technique to improve understanding of the interaction of non-linear 

climatic variables with hydrological stores (including surface water and terrestrial water 

storage-TWS).  Figure 6 shows the performance metric for NARX - MLP- RF, WBM-SVR, 

CNNs, MLP, SSA-ANN, ANN, EANN, and GPR models. 

 

Figure (6): Performance metric for NARX - MLP- RF, WBM-SVR, CNNs, MLP, SSA-

ANN, ANN, EANN, and GPR models. 

   The machine learning and deep learning models demonstrated good skill in predicting daily 

streamflow using just temperature and precipitation data, with the LSTM model performing 

slightly better than CNN. Both models produced accurate streamflow estimates with minimal 

bias (Quyen, et al., 2023). The hybrid LSTM model outperformed the Boruta feature 

selection algorithm (BRF-LSTM) within a defined range, emphasizing high accuracy based 

on RRMSE and RMAE (Ahmed, et al., 2021). The comparative analyses of nonlinear 
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models, including SVR and GP, demonstrated their superiority over MLR and BNN models, 

with the latter slightly outperforming other nonlinear models. The study also illuminated 

limitations associated with specific performance metrics, such as the sensitivity of CC to rare 

events and forecast bias (Rasouli, et al., 2012). The comparison of the performance of the 

FFNN and LSTM models found that both models performed well for forecasting lake water 

levels, with only marginal differences in their performance the LSTM model did not show 

significant superiority over the traditional FFNN model. The spatial distributions of RMSE 

and CC indicated that model errors were heterogeneous spatially, suggesting that local 

conditions have a stronger influence on water level fluctuations (Zhu, et al., 2020).  

   Kwon, et al., (2020) introduced a hybrid model, called the Tank-least squared support 

vector machine (LSSVM), which combined a conceptual tank model with the LSSVM 

framework to describe the rainfall-runoff process. The study demonstrated the efficacy of the 

Tank-LSSVM model in simulating daily runoff, with goodness of fit measures such as 

RMSE, NSE, and R2 indicating "very good" performance during the training and testing 

periods.  

   Also, the CNN model provides good accuracy for streamflow prediction based on the R2, 

RMSE, and MAE metrics reported. The enhanced extreme learning machine (EELM) model 

proposed in this study outperformed the classical ELM and SVR models in terms of various 

performance metrics like NSE, R2, RMSE, and MAE (Yaseen, et al., 2019). Yazid, et al., 

(2020) proposed an efficient hybrid system by integrating the Grey Wolf Optimization 

(GWO) algorithm with machine learning models such as SVR, MLR, and ANN. The best 

hybrid models were SVR-GWO such that the values of CC, RMSE, NSE, and MAE. Also, 

Adnan, et al., (2021) compared four machine learning models (ANFIS-PSO, ANFIS-FCM, 

MARS, and M5Tree) for hourly streamflow prediction. The machine learning models showed 

superior performance for hourly streamflow prediction, with the ensemble model MM-SA 

achieving the highest accuracy overall based on NSE, RMSE, and MAE metrics. Riahi, et al., 

(2021) trained and evaluated the performance of several evolutionary algorithms, including 

FFA, GA, GWO, PSO, and DE hybridized with ANFIS. The best hybrid models were ANFIS-

GWO such that the values of R2, RMSE, NSE, and RAE were improved for the short-, mid-, 

and long-term forecasts. Figure 7 shows the performance metric for LSTM, BRF-LSTM, 

SVR, GP, FFNN, Tank-LSSVM, EELM, SVR-GWO, and ANFIS-GWO. 
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Figure (7): Performance metric for LSTM, BRF-LSTM, SVR, GP, FFNN, Tank-LSSVM, 

EELM, SVR-GWO, and ANFIS-GWO 

 

   Deep learning and hybrid models are increasingly dominating the field of surface water 

prediction. While traditional machine learning models like Support Vector Regression (SVR) 

and M5 Model Trees have shown promise, deep learning techniques such as Deep Neural 

Networks (DNNs) and Long Short-Term Memory (LSTMs) consistently demonstrate 

superior accuracy, particularly in capturing the complexities of runoff processes. A 

particularly exciting development is the rise of hybrid models, which combine the strengths 

of different algorithms. Hybrid approaches like the NARX - MLP - RF model for short-term 

streamflow forecasting, the WBM-SVR for lake water levels, and the SSA-ANN for monthly 

streamflow have all demonstrated notable success (Di Nunno et al., 2023; Hou et al., 2022; 

Apaydin et al., 2021). These hybrid models point towards a future where the synergistic 

combination of diverse techniques leads to even more accurate and robust predictions. 

   The analysis reveals limitations in current approaches to surface water predictions. Many 

models demonstrate a heavy reliance on large, high-quality datasets, which poses significant 

challenges for data-scarce regions. Additionally, existing models may struggle to accurately 

account for the non-stationarity introduced by climate change, highlighting a need for the 

development of approaches that explicitly incorporate climate projections and their associated 

impacts. Furthermore, an over-reliance on the Root Mean Square Error (RMSE) metric is 

apparent. While informative, RMSE is known to be sensitive to outliers and may not fully 

capture all aspects of model performance. A more comprehensive evaluation framework 



 
Journal of Water Resources and Geosciences 
Vol. 3, No. 2, 2024 
 

36 
 

should incorporate multiple metrics that consider bias, correlation, and variability to provide 

a more nuanced assessment of model capabilities. 

3.1.2 Perfor ance Metrics of Surface Water Quality Predictions 

    The deep learning methods of CNN and LSTM showed high accuracy in modeling both 

water level and quality parameters, as evaluated by metrics like R2, NSE, MSE, and RMSE 

(Baek et al. 2020). All well-trained DNN models were found to yield satisfactory outcomes, 

making the proposed DNN models a suitable choice for modeling dissolved oxygen at 

various stations. The optimal FF-DNNs for each station demonstrate high efficiency for the 

optimally selected station (Karamoutsou & Psilovikos, 2021). Eight WQI models are 

scrutinized, employing the Monte Carlo simulation (MCS) technique to estimate model 

uncertainty. Additionally, the GPR algorithm is applied to predict uncertainties in WQI 

models at each sampling site. Moreover, the study suggests that the unweighted RMS 

aggregation function could potentially be used for assessing coastal water quality (Uddin et 

al. 2021).  In evaluating the models, the DRNN stands out, demonstrating superior accuracy 

in predicting Dissolved Oxygen (DO) concentration across various lead times when 

compared to the SVM and ANN models. This underscores the potential of deep learning 

techniques in significantly improving the prediction of water quality parameters. This study 

contributes to the growing body of knowledge in the field, emphasizing the promise and 

effectiveness of advanced AI models for enhancing our understanding and prediction of key 

environmental indicators (Moghadam, et al., 2021). Temperature changes and rainfall 

intensity with surface water levels. The comprehensive performance of the model shows that 

the proposed hybrid VCLM model can be recommended as a promising model for online 

water quality prediction and comprehensive water environment management in lake systems 

(He, et al., 2022). The L8 ConvLSTM model had superior performance compared to other 

methods such as SVR, GPR, ANN, LSTM, and Convolutional-LSTM for temperature 

prediction (Mukonza & Chiang, 2022). In the investigation of reservoir water quality 

prediction, this study contrasts machine learning and deep learning models, with a particular 

emphasis on the WQI derived from parameters sensitive to rainfall. Notably, the XGBoost 

and GRU models demonstrated remarkable performance, achieving a high R2 value (Farzana, 

et al., 2023). Various machine learning algorithms were employed, including standalone 

models (RF, M5P, RT, and REPT) and hybrid models combining these with bagging, 

parameter selection, and classification techniques. The combinations of RT with bagging 

(BA) demonstrated superior performance according to multiple evaluation metrics such as 
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R2, NSE, CC, RMSE, MAE, and PBIAS (Bui, et al., 2020). Aldrees, et al., (2022) used MEP, 

a machine learning approach, to develop predictive models for water quality parameters. 

MEP is a genetic programming technique that evolves mathematical expressions to solve 

regression problems. The MEP models were compared with traditional non-linear regression 

models (NLRMs) and showed good generalization capabilities. The MEP models had higher 

accuracy and generalized performance compared to NLRMs. Alqahtani, et al. (2022) 

conducted a study comparing the predictive capabilities of GEP and ANN as individual 

models against the ensemble learning model, random forest (RF), for forecasting river water 

salinity. The assessment validated the results, leading to the conclusion that the RF model, 

with carefully selected key parameters, stands out as a prioritized tool for water quality 

assessment and management. Jafar, et al., (2023) highlighted the successful application of 

MLR and ML models, emphasizing LR, LAR, and BR, in predicting water quality with 

exceptional accuracy. Figure 8 shows the performance metric for CNN-LSTM, FF-DNNs, 

DRNN, L8 ConvLSTM, XGBoost, GRU, RT-BA, MEP, RF, and MLR. 

 

Figure (8): Performance metric for CNN-LSTM, FF-DNNs, DRNN, L8 ConvLSTM, 

XGBoost, GRU, RT-BA, MEP, RF, and MLR. 

   The study by Thai-Nghe, et al., (2020) demonstrated the superiority of LSTM over SVM in 

water quality forecasting. A comparison was made between the performance of the LSTM, 

RF, and BP-ANNs in their ability to predict the mean daily water temperature in rivers. This 

evaluation aimed to reconstruct the inherent thermal conditions and to discern any 

temperature shifts attributable to the operation of the reservoir. Overall, the LSTM model's 

improved predictive capabilities offer a potent tool for forecasting water temperature and for 

effectively managing the ecological aspects of rivers in the context of the Anthropocene 
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epoch (Qiu et al. 2021). The LSTM model with the transfer learning approach is considered 

more realistic and practical for predicting future climate change impacts. The LSTM model 

shows accurate predictions based on the quantitative evaluation of R2 and NSE (Kimura, et 

al., 2021). The GEP outperformed both ANN and linear and non-linear regression models for 

Total dissolved solids (TDS) and electrical conductivity (EC). The results indicated a strong 

correlation with NSE and R2 for all the developed models (Shah, et al., 2021). The results 

indicated that all twelve ML namely, five boosting-based algorithms (Adaboost, GBM, 

HGBM, LightGBM, XGBoost), three decision tree-based algorithms (DT, EXT, and R), and 

four ANN-based algorithms (MLP, RBF, DFNN, and CNN), have good performance in 

predicting the water quality index (WQI) but that XGBoost has the best performance with the 

highest accuracy (Khoi, et al., 2022). PGDL model performance as measured by RMSE was 

superior to deep learning (DL) and process-based (PB) for two detailed study lakes, but only 

when pretraining data included greater variability than the training period (Read, et al., 2019). 

The Results showed that LSTM outperformed the CNN model for dissolved oxygen 

prediction (Barzegar, et al., 2020). The performance of the ETR is compared to SVR and 

DTR. The analysis shows that the ETR model produces more accurate WQI predictions for 

both the training and testing phases (Asadollah, et al., 2021). The paper compares different 

deep learning models and ARIMA for predicting water quality parameters biochemical 

oxygen demand and total phosphorus. The performance metric used is MAPE to evaluate the 

performance metric of deep learning models and ARIMA (Choi, et al., 2021). The predicted 

values of the model and the actual values were in good agreement and accurately revealed the 

future developing trend of water quality, showing the feasibility and effectiveness of using 

LSTM deep neural networks to predict the quality of drinking water (Liu, et al., 2019). Figure 

9 shows DL had the best performance overall compared to GP, LR, and SVM models. 
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Figure (9): Performance metrics for CNN-LSTM, FF-DNNs, DRNN, L8 ConvLSTM, 

XGBoost, GRU, RT-BA, MEP, RF, and MLR. 

   Deep learning is proving highly effective in predicting water quality parameters, as shown 

by the strong performance of Convolutional Neural Networks (CNNs) and Long Short-Term 

Memory (LSTMs). These models demonstrate high accuracy in capturing complex 

relationships between water level fluctuations and key indicators like dissolved oxygen, 

salinity, and temperature. Studies consistently show that well-trained deep learning models 

outperform traditional machine learning approaches like Support Vector Machines (SVMs) 

and Artificial Neural Networks (ANNs), especially when dealing with long-term trends and 

complex interactions between variables (Baek et al., 2020; Moghadam et al., 2021). 

Further enhancing this accuracy is the development of hybrid models. For example, the L8 

ConvLSTM model surpassed SVR, GPR, ANN, LSTM, and Convolutional-LSTM in 

predicting temperature (Mukonza & Chiang, 2022), demonstrating the power of combining 

multiple techniques. Similarly, ensemble methods like XGBoost, which integrates multiple 

decision trees, have exhibited exceptional performance in predicting the water quality index 

(WQI) (Khoi et al., 2022). These findings strongly suggest that hybrid and ensemble 

techniques hold significant potential for improving future water quality prediction models. 
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4. Conclusions 

   This review of 61 research papers examining machine and deep learning for surface water 

predictions reveals a significant trend: hybrid and ensemble approaches, particularly those 

incorporating deep learning, consistently outperform standalone, shallow learning models. 

Deep learning algorithms like LSTM, DNN, and CNN consistently demonstrate superior 

performance in predicting streamflow, water levels, and water quality. This is likely attributed 

to their ability to learn complex, non-linear relationships within hydrological processes, as 

evidenced by their strong performance on metrics like R², NSE, and RMSE. 

Hybrid models, which combine elements from different algorithms, are particularly 

promising. For example, the 1D-CNN model achieved exceptional accuracy in streamflow 

forecasting, while the WBM-SVR model excelled in predicting lake water levels. These 

successes highlight the potential of integrating the strengths of different learning paradigms 

for improved accuracy and robustness. Ensemble methods, such as Random Forest and 

XGBoost, similarly demonstrate strong performance in water quality prediction, underscoring 

the effectiveness of leveraging multiple learners to improve overall accuracy and 

generalization. 

While the reviewed literature showcases considerable progress in surface water predictions 

using machine and deep learning, limitations remain. Many models are highly reliant on the 

availability of extensive, high-quality data, posing a challenge for data-scarce regions. The 

complexity of real-world hydrological processes, especially in the context of climate change, 

presents an ongoing challenge for model development. Furthermore, evaluation metrics, 

while often focused on accuracy, may not fully capture the nuances of model performance, 

such as bias or uncertainty. 

The studies' validity was strengthened by factors such as climate change focus, high-quality 

data, specific hydrological characteristics, and use of advanced modeling techniques. 

The future research should prioritize the development of models that can effectively handle 

data limitations and account for the non-stationarity introduced by climate change. Exploring 

new hybrid and ensemble approaches, particularly those incorporating deep learning, remains 

a promising avenue for improving prediction accuracy. Additionally, exploring new 

evaluation metrics that consider factors beyond accuracy, such as uncertainty quantification 

and model interpretability, will be crucial for assessing and enhancing model robustness and 

reliability. 
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